
Poster: Unider: Exploit Attack Emulator Armed
with State-of-Art Exploit Techniques

Yu Ding
Peking University

Beijing, China
dingelish@gmail.com

Chao Zhang, Tao Wei
UC Berkeley

Berkeley, CA, USA
{gausszhch, lenx.wei}@gmail.com

Abstract—We have many security enforcement techniques
deployed in commodity systems. But we lack of universal
benchmark program to evaluate these techniques. This poster
introduces working project named ‘unider ’, a universal exploit
attack emulator. Unider works on recent Windows systems
and supports state-of-art exploit techniques. By using unider ,
researchers can evaluate their defense techniques quickly and
conveniently.

I. INTRODUCTION

Exploit attack detection and prevention techniques (such as
[1]–[4], [8], [11]) are well studied. Many of these techniques
are now deployed in commodity systems. To test these tools,
researchers use various penetration platforms such as Metas-
ploit [7] to launch attacks. Also, researchers spend lots of time
collecting vulnerable software and configuring testbeds. We
need a universal benchmark program to evaluate exploit attack
detection and prevention tools, instead of using piecemeal, ad
hoc exploits.

To better evaluate defense techniques, we design unider , a
universal exploit attack emulator. Unider generates malicious
input to itself and hi-jacks the control flow to injected shell-
code. Unider has the following characteristics:

• Unider supports current Windows operating systems,
including both 32 bit and 64 bit version of Windows
7/Vista/XP. In future Unider will be ported to Linux and
OS X.

• Unider emulates state-of-art exploit techniques, such as
heap-spraying code injection, Kill-Bill exploit [5] and
DEP/ASLR bypassing.

• Unider contains V8 and SpiderMonkey. These two script
engines are used to emulate JIT related code injection
techniques.

• Unider suits analysis tools better. First, Unider provides
an option to select the type of input source (file, network,
user input). This option helps taint analysis based tools
better understanding the whole exploit attack. Also unider
provides a built-in function to launch all supported attacks
continuously.

II. UNIDER DESIGN

The structure of unider is shown in Figure 1. Unider has two
parts: exploit generator and vulnerable components. Vulnera-
ble components leak essential information about themselves

Vulnerable Components

Exploit 
Generator

Vulnerable 
Function

Vulnerable 
Structure

Script Language 
Engine

Dumper Input Interface

Exploit 
Code

Network

File

User Input

Fig. 1: General Structure of unider

to the exploit generator and the exploit generator generates
exploit code. The exploit codes are sent to vulnerable compo-
nents to trigger the vulnerability and execute payloads.

Unider describes an exploit attack in 7 dimensions:
target/location/technique/attack code/function/code injection
technique/input method. First five of these dimensions are
similar to RIPE [10] and the last two dimensions are new. Code
injection techniques contain state-of-art code injection skills.
These code injection skills are manually collected from : (a)
Metasploit repository, (b) hackers’ forums and (c) some other
online public exploit databases such as exploit-db [6]. Input
method dimension indicates the routine of passing exploit
code to vulnerable components. This is the special design for
convenience of taint based analysis tools. Taint based analysis
tools need to mark inputs as tainted precisely. However, most
practical programs get input from multiple channels such
as file/network/user inputs. The input method dimension is
designed to help these taint based tools mark the input bytes
precisely.

Unider provides JIT based code injection techniques. These
code injection techniques can emulate JIT spraying perfectly.
With the help of vulnerable components, essential information
such as injected code pointers are leaked to the exploit
generator. The exploit generator then generates exploit codes
which hi-jack the control flow of vulnerable components to the
injected JIT codes. This kind of attack breaks the control flow
integrity of JIT dynamic codes and can evade from current
CFI based detection/protection.

Here we give an example about how Unider emulates an
attack by using JIT engine. Latest SpiderMonkey engine sup-
ports JIT dynamic compiling and asm.js at the same time.



Control flow transfer between asm.js dynamic code/other
JIT dynamic code/native code are implemented in variety
ways. Under some certain circumstances, the control flow
transfers between dynamic codes and static codes requires a
pointer table locates at a f ixed offset in the global data section.
This pointer table is writable and exposed to the attacker
in runtime. By tampering this pointer table, the attacker can
easily trigger injected codes. This kind of attack hi-jacks the
control flow transfer between static codes and dynamic codes.
Unider provides a information leakage vulnerability, which
leaks the offset and base address to the exploit generator. In
this way, the exploit hi-jacks the control flow by tampering the
pointer table. This kind of attack is not well-studied in both
academic area and hackers community.

III. RELATED WORKS

Only a limited number of this kind of benchmark tools
are released to public. Zhivich et al. collected 55 vulnerable
programs [12] and evaluated some defense techniques on
these programs. However, these testbeds are not released to
public and the experiments are not repeatable. RIPE [10] and
its ancestor [9] provide similar solutions. RIPE describes an
exploit attack in five dimensions (target, location, technique,
attack code and function) and can launch 850 different attacks.
However, RIPE can only be built in Ubuntu 6.06, which is a
7-year-old operating system with few security enhancements.
Besides, RIPE only includes conventional exploit techniques.
Modern exploit techniques such as JIT-spraying, Kill-Bill,
DEP/ASLR bypassing techniques needs to be included in such
benchmarks.

IV. CONCLUSION

In this poster, we show unider , an exploit attack emulator
armed with state-of-the-art exploit techniques. Unider can help
security researchers evaluate their defense techniques. Also
Unider can act as a benchmark program for defense/mitigation
techniques. Unider is a working project and we will soon
release the code to community.

REFERENCES

[1] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA, M., AND CASTRO,
M. Preventing Memory Error Exploits with WIT. In Proceedings of
the 2008 IEEE Symposium on Security and Privacy (SP’08) (Oakland,
CA, May 2008), IEEE, pp. 263–277.

[2] ANAGNOSTAKIS, K. G., SIDIROGLOU, S., AKRITIDIS, P., XINIDIS,
K., MARKATOS, E., AND KEROMYTIS, A. D. Detecting targeted attacks
using shadow honeypots. In Proceedings of the 14th USENIX Security
Symposium (USENIX’05) (Baltimore, MD, 2005), pp. 129–144.

[3] CUI, W., PEINADO, M., AND WANG, H. J. Shieldgen: Automatic data
patch generation for unknown vulnerabilities with informed probing.
In Proceeding of the 28th IEEE Symposium on Security and Privacy
(SP’07) (Oakland, CA, 2007), In In Proceedings of 2007 IEEE Sympo-
sium on Security and Privacy.

[4] DIEBOLD, P., HESS, A., AND SCHÄFER, G. A Honeypot Architecture
for Detecting and Analyzing Unknown Network Attacks. Kommunika-
tion in Verteilten Systemen (KiVS) (2005), 245—-255.

[5] ECLIPSE, S. kill-bill : Microsoft asn.1 remote exploit for can-2003-0818
(ms04-007).

[6] EXPLOITS DATABASE BY OFFENSIVE SECURITY. http://www.
exploit-db.com/.

[7] RAPID 7. Metasploit penetration testing platform,
http://www.metasploit.com/.

[8] WANG, X., JHI, Y.-C., ZHU, S., AND LIU, P. STILL: Exploit Code
Detection via Static Taint and Initialization Analyses. In Proceedings
of Annual Computer Security Applications Conference (ACSAC’08)
(Anaheim, CA, Dec. 2008), IEEE, pp. 289–298.

[9] WILANDER, J., AND KAMKAR, M. A Comparison of Publicly Avail-
able Tools for Dynamic Buffer Overflow. 10th Annual Network and
Distributed System Security Symposium (NDSS’03).

[10] WILANDER, J., NIKIFORAKIS, N., YOUNAN, Y., KAMKAR, M., AND
JOOSEN, W. RIPE: Runtime Intrusion Prevention Evaluator. In Proceed-
ings of the 27th Annual Computer Security Applications Conference on
- ACSAC ’11 (New York, New York, USA, Dec. 2011), ACM Press,
p. 41.

[11] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L., MCCA-
MANT, S., SONG, D., AND ZOU, W. Practical control flow integrity and
randomization for binary executables. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy (Washington, DC, USA, 2013), SP
’13, IEEE Computer Society, pp. 559–573.

[12] ZHIVICH, M., AND LEEK, T. Dynamic buffer overflow detection. In
Workshop on the Evaluation of Software Defect Detection Tools (2005).


