
Attack and Defense the OAuth based SSO systems

Jianjun Ye, Yu Ding, Tongxin Li, Huilin Zhang, Xinhui Han
Peking University

Beijing, China
{yejianjun, dingelish, litongxin, zhanghuilin, hanxinhui}@pku.edu.cn

ABSTRACT
In this paper we show our findings in web based single-sign
on (SSO) systems. We show how to steal the access tokens
in SSO systems by a motivating example. Then we explain
how to detect this kind of attacks automatically.We analyze
the current mitigation techniques and their weakness. At
last, we give a solution to this kind of attacks.

Keywords
OAuth; Redirect Mechanism; Single Sign-On;

1. INTRODUCTION
More and more sites apply web based single-sign on (SSO)
techniques to provide better user experiences. With OAuth
based SSO authentication, users can login to relying par-
ties(RP) with the credentials of Identity Providers(IdP). SSO
authentication releases the burden of remembering different
passwords and reduces the risk of password leakage.

Redirect mechanisms are widely used in recent sites, such
as forums, search engines and advertisement systems. Gen-
erally, redirect page redirects the user’s browser to a given
URL. In a forum, when the user wants to reply a thread
before login, the browser will jump to the login page with
a redirect argument. After login succeeds, the browser
is redirected to the previous thread automatically. The
redirect mechanism makes it convenient for both users to
post/reply and also reduces the complexity of the sites.

Vulnerability exists in many OAuth based SSO authenticate
systems. The RP redirect the user’s browser to the IdP login
page with a redirecturl argument. After authentication,
the user’s browser will return to the url indicated by the
redirecturl argument with security tokens. In most cases,
the IdP does not verify the redirect url for security. Thus the
attacker can tamper the redirect url and steal the security
tokens.

Previous works seldom focuses on the redirect mechanism.

Adam et al. define the Execution-After-Redirect attack [1]
and develop a system to automatically discover this kind of
vulnerabilities. San-Tsai et al. analyze the implementation
of SSO systems and reveals many security issues [4]. How-
ever, these papers do not concern about the token leakage
in OAuth based SSO systems.

In this paper, we give an example to reveal the token leakage
vulnerability at first. Then we analyze the root cause of this
vulnerability and show the design of an automatic vulner-
ability detection tool. Also we give a solution to eliminate
this kind of vulnerabilities. TO sum up, our contributions
are:

• We discover a kind of token leakage vulnerabilities in
OAuth based SSO systems.

• We show the design of a vulnerability discover tool
which can semi-automatically detect vulnerable sites.

• We analyze the root cause of this kind of vulnerabilities
and give the solution to improve SSO system security.

2. A MOTIVATING EXAMPLE
Figure 1 shows the normal authentication in (a) and the
attack in (b). When a user wants to visit vul.com and looks
at his own profile, he first visit the profile page (step 1 in
(a)). Then vul.com finds out that he needs to login and
sends an auth request (step 2 in (a)). The user then chooses
to login with FB account and navigate to auth.com to login
(step 3 in (a)). The URL of the login page is called ‘key
URL’ , which contains two redirect URLS. The first return
URL indicates the RP and the second return URL indicates
the final page after the authentication. Next, after login
succeeds, the user’s browser returns to the first redirect URL
with session token (step 4 in (a)). Finally, the user visit the
profile page with session token.

Figure 1(b) reveals the attack. First the attacker makes
victim to visit a malicious ‘key URL’ (step 1 in (b)). This
can be done by variety of ways such as spamming. Then the
victim’s browser will be redirected to auth.com for authenti-
cation (step 2 in (b)). Next, the vulnerable redirect page in
vul.com redirects the victim’s browser to the malicious site
with security token (step 3 in (b)). The attacker uses the
malicious site to get the security tokens and gain access to
the victim’s accounts.

1.visit
http://vul.com/profile

5.redirect to ohttp://vul.com/profile (code in http refer)

auth.com

1.click to authhttp://auth.com/r=vul.com/r?&o=mal.com

2.redirect to r

http://vul.com/r?&o=mal.com&code=xxx

3.redirect to ohttp://mal.com/ (code in http refer)

User

vul.com

mal.com

vul.com/profile

auth.com

3.login with FBhttp://auth.com/r=vul.com/r?&o=vul.com/profile

4.redirect to r

http://vul.com/r?&o=vul.com/profile&code=xxx

2.auth request

User

User

vul.com

vul.com/profile

(a) (b)

Figure 1: (a) shows the OAuth based SSO authentication progress. (b) shows the attack. In (b), the attacker
tamper the first returnurl with a malicious URL. After login, the user’s browser will visit the malicious URL
with security token.

3. DETECTING OAUTH-REDIRECT VUL-
NERABILITIES

There are two return URLs in the whole attack: the first
return URL which indicates the RP page, and the second
return URL which indicates the final target. To trigger an
attack similar to 1(b), there is only one prerequisite: RP
can redirect to arbitrary page with security token. To detect
such kind of vulnerabilities, we only need to check if the
login page of RP can redirect to arbitrary URL with security
tokens.

Some mitigation techniques has been deployed in some sites
such as sohu.com. In the SSO system in sohu.com, there
is no such key URL containing two return url at a time.
Instead, the login page invokes set-cookie API to store
the return page in cookie. After login succeeds, the login
page fetch the return URL from the cookie and redirect the
user’s browser accordingly. In this case, the attacker needs
to tamper the first redirect URL (RP url) to achieve the
same goal. To detect such kind of vulnerabilities, we need to
check if the IdP can redirect to arbitrary URL with security
tokens.

Though it is easy to launch such attacks, it is difficult to
automatically discover such vulnerable sites. Modern sites
have different structures and login pages are also various
from each other. So it is difficult to automatically locate
such login pages in RP and IdP. We use a semi-automatic ap-
proach to overcome the difficulty. First we use web crawler
to collect potential RP pages. This is done by simple regular
expression matching. Second, we manually check if the col-
lected RP pages are real RP pages. Next, we automatically
verify if the RP and IdP can redirect to arbitrary pages. Fi-
nally, we manually examine if the arbitrary redirect can be
exploited.

4. NEW MITIGATION STRATEGY
Current mitigation techniques can be classified into three
classes: browser defense/RP defense/IdP defense. Chrome
Safe Browsing [2] use a blacklist to protect user from being
redirect to malicious URLs. The blacklist is dynamically up-
dated every day. On RP side, sohu.com invokes ‘set-cookie’
APIs to reduce attack surface. Freewheel company uses dy-
namically updated blacklist in the servlet to prevent the

user from being attacked. On IdP side, facebook.com has
a whitelist to ensure that the security token can only be
returned to trusted sites [5]. However, we think that the
blacklist based approach can be bypassed by modern URL
polymorphic techniques such as URL shorten tools [3] and
the whitelist based approach lacks of scalability.

Our mitigation technique is quite simple. We suggest that
the IdP should return to a fixed page in RP. The fixed page
should be a key part of the SSO protocol. Also, the RP
should only redirect to the page in the same site.

5. CONCLUSION
In this paper, we discuss a new kind of attack in OAuth
based SSO systems. The root cause of the vulnerability is
the lack of URL check on RP side and the IdP side. We
give an example to show the attack step by step. Also
we show how we detect such kind of vulnerable sites semi-
automatically. To this end, we give a new mitigation strat-
egy, which can be used in practical OAuth systems.

6. REFERENCES
[1] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear the

ear: Discovering and mitigating execution after redirect
vulnerabilities. In Proceedings of the 18th ACM
Conference on Computer and Communications
Security, CCS ’11, pages 251–262, New York, NY, USA,
2011. ACM.

[2] Google. Chrome safe browsing. http://www.google.
com/transparencyreport/safebrowsing/.

[3] Google. Google url shortener. https://goo.gl.

[4] S.-T. Sun and K. Beznosov. The devil is in the
(implementation) details: An empirical analysis of
oauth sso systems. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 378–390, New York, NY, USA,
2012. ACM.

[5] C. Warren. Another security flaw gets the heartbleed
treatment, but don’t believe the hype.
http://mashable.com/2014/05/02/

oauth-openid-not-new-heartbleed/.

