
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

May 2017, Vol. 60 052110:1–052110:17

doi: 10.1007/s11432-016-5521-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Accurate and efficient exploit
capture and classification

Yu DING1, Tao WEI2 , Hui XUE2 , Yulong ZHANG2,

Chao ZHANG2 & Xinhui HAN1*

1Institute of Computer Science and Technology, Peking University, Beijing 100080, China;
2Eletrical Engineering and Computer Sciences , UC Berkeley, Berkeley, CA 94720, USA

Received October 22, 2015; accepted November 24, 2015; published online September 13, 2016

Abstract Software exploits, especially zero-day exploits, are major security threats. Every day, security

experts discover and collect numerous exploits from honeypots, malware forensics, and underground channels.

However, no easy methods exist to classify these exploits into meaningful categories and to accelerate diagnosis

as well as detailed analysis. To address this need, we present SeismoMeter, which recognizes both control-flow-

hijacking, and data-only attacks by combining approximate control-flow integrity, fast dynamic taint analysis

and API sandboxing schemes. Once it detects an exploit incident, SeismoMeter generates a succinct data

representation, called an exploit skeleton, to characterize the captured exploit. SeismoMeter then classifies the

captured exploits into different exploit families by performing distance computing on the extracted skeletons.

To evaluate the efficiency of SeismoMeter, we conduct a field test using exploit samples from public exploit

databases, such as Metasploit, as well as wild-captured exploits. Our experiments demonstrate that SeismoMeter

is a practical system that successfully detects and correctly classifies all these exploit attacks.

Keywords software security, exploit classification, exploit attack capture, control flow integrity, JIT security

Citation Ding Y, Wei T, Xue H, et al. Accurate and efficient exploit capture and classification. Sci China Inf

Sci, 2017, 60(5): 052110, doi: 10.1007/s11432-016-5521-0

1 Introduction

This study presents SeismoMeter, a system that captures and classifies incoming attacks based on their

underlying exploits quickly and automatically in honeypot environments [1–4]. These environments

include both server-side honeypots and honeyclients [5, 6].

A software exploit attacks victim software by taking advantage of software vulnerabilities to drive it

toward an unexpected behavior. With the help of exploits, attackers can spread network worms, construct

botnets, and initiate advanced persistent threat (APT) attacks [7].

In a concrete attack, attackers implement an exploit using malformed data and shellcode payload.

A typical exploit comprises several steps, as illustrated in Figure 1. In Step 1, the attacker feeds the

exploit consisting of malformed data and shellcode payload to the victim program. The malformed data

drives the victim toward a target vulnerability through legitimate control flow paths, usually causing the

*Corresponding author (email: hanxinhui@pku.edu.cn)

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:2

1

2

3

4

5

Paving
data

Shellcode
payload

Malware

Vulnerability

Bogus
control
transfer

Victim software

Exploit

Figure 1 A typical workflow of exploits. Attackers rely on exploiting a target vulnerability to trigger bogus control flow

transfer toward the shellcode payload, which may, in turn, further execute malware.

control data (e.g., a return address) to become tampered (Step 2). Thus, a bogus control transfer occurs

(Step 3). The victim program then unexpectedly deviates from the legitimate control flow. It may crash

and cause a denial-of-service (DOS) or start to run attacker’s shellcode payload (Step 4). The shellcode

can launch further attacks or simply download and execute some other powerful malware, as shown in

Step 5.

Exploits play a major role in cyber attacks. Capturing and classifying exploits greatly improves under-

standing of the manner in which attacks launch. Captured exploits can reveal the details of vulnerabilities,

as well as the skills employed in bypassing mitigation techniques, such as bypassing StackGuard [8], data

execution pevention [9], and address space layout randomization [10]. Moreover, capturing and classi-

fying exploits can help security researchers identify new vulnerabilities or new attack skills, and then

improve protections such as generating fingerprints for intrusion detection/prevention systems, patching

vulnerable systems, and developing more effective mitigation approaches. These capabilities are strongly

demanded in CGC1), a recent state-of-art exploit attack race, and capture-the-flag contests.

Previous studies on exploit attack classifications fall into two categories: vulnerability-specific and

network-level analysis. Vulnerability-specific analysis focuses on the routines of triggering vulnerabilities.

Existing approaches such as [11–14] can be used to analyze exploits. However, in general, they are slow

and infeasible for online exploit attack analysis (e.g., they may cause timeout of network interactions

in honeypots). Network-level attack classification techniques characterize attacks at the network level.

For example, WOMBAT [15] classifies attack events using statistical characteristics such as source IP,

attack time and armies of zombies. Other approaches classify attacks based on characteristics of network

packets [16–18]. However, these characteristics usually are not intrinsic properties of attacks. Thus

attackers can bypass these approaches through evasion or obfuscation.

In this study, we present SeismoMeter, a novel exploit capturing and classification system, which is

efficient and can be directly deployed in honeypots to monitor vulnerable programs and services online.

It is also accurate in capturing and classifying real-world exploits. SeismoMeter characterizes exploits

based on the exploit routine instead of vulnerability-specific characteristics. Therefore, SeismoMeter

can recognize different exploits that target the same vulnerability. In addition, SeismoMeter can defeat

network-level obfuscation and encryption because the classification process does not rely on network data.

To achieve accuracy when capturing, we identify both control-flow-hijacking and data-only attacks [19]

(also known as non-control-data attacks [20]). While control-flow integrity (CFI [21]) provides a powerful

method to detect control-flow hijacking attacks, it remains a challenge to model CFI in dynamically

generated code and to detect automatically any violation of integrity. We propose approximate Control

Flow Integrity (aCFI) to detect CFI-violation exploits. aCFI can be used to detect CFI violation not

1) Darpa Cyber Grand Challenge, https://cgc.darpa.mil/.

https://cgc.darpa.mil/

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:3

only in binary executables, but also in dynamically generated codes. We also develop fast dynamic taint

analysis [22] and API sandboxing schemes to detect data-only attacks that do not violate CFI.

To achieve accurate classification, SeismoMeter must be sufficiently sensitive to differentiate exploits

that target different vulnerabilities. It must also be able to differentiate exploits that targeting the same

vulnerability but in different ways. However, SeismoMeter should also be sufficiently robust to tolerate

various noises. This is necessary so the same exploits that attack different execution environments or

inject different shellcode can be classified into the same group. To balance sensitivity and robustness,

SeismoMeter generates an exploit skeleton for each exploit. The exploit skeleton is a concise representation

that characterizes the manner in which an exploit hijacks a victim program. Exploits are then classified

based on the distance between their exploit skeletons.

We implement SeismoMeter using 21 K lines of C code which run on Windows. We evaluate Seis-

moMeter’s effectiveness using samples from both public exploit database Metasploit2) and real-world

field tests. Experimental results show that SeismoMeter can classify exploits effectively and efficiently.

During a seven-day field test, SeismoMeter captured 394 exploits and classified them into six categories.

Of the 394 exploits, 255 targeted one of the most attacked vulnerability (MS08-067) [23] and these ex-

ploits comprise three families. We also monitored 5000 websites and captured 103 malicious drive-by

downloading pages. SeismoMeter successfully classified them into 27 exploit families.

SeismoMeter contributes as follows:

• To the best of our knowledge, our study is the first to classify exploits into representative categories

based on target victim program’s execution trace.

• We propose a concise data representation called “exploit skeleton”, to characterize exploits. Exploit

skeleton captures the fundamental characteritics of the manner in which an exploit hijacks a program.

We also devise a fast and accurate algorithm to classify exploits based on their exploit skeletons.

• We propose a scheme, aCFI, to detect CFI violation in both binary executables and dynamic gener-

ated codes. A novel approach that combines aCFI, dynamic taint analysis and API sandboxing schemes

is implemented to detect both control-flow-hijacking and data-only attacks.

• We build a prototype of SeismoMeter, and evaluate it using both known and wild-captured exploits.

Our experiments demonstrate that SeismoMeter can recognize and classify these exploit attacks (including

just-in-time (JIT)-based attacks) efficiently and effectively. The field test shows that SeismoMeter is a

practicable system.

The remainder of this paper is organized as follows. Section 2 provides an example that motivated our

study. Section 3 details exploit skeleton which is the key of our study. Section 4 gives an overview of

SeismoMeter and Section 5 describes the method SeismoMeter employs to capture and detect an exploit

attack. Section 6 explains the manner in which SeismoMeter generates exploit skeletons and classifies

them, and Section 7 describes our experiments and results. Section 8 reviews related works. We conclude

our study in Section 9.

2 Motivating example

Given the same target vulnerability, different exploits can drive the victim program through different

paths to achieve a bogus control transfer. We can differentiate these exploits by the paths they take.

One good case study is the massive attacks to MS08-067 , which comprised 61.2% of all software attacks

in 2011. This vulnerability resides in the path handling function NetPathCanonicalize in netapi32.dll.

An attack input with two “..\” as malformed data can trigger a stack overflow vulnerability through

which the attacker can achieve a bogus control transfer toward shellcode payload.

We collected the known four attacks against this vulnerability from the exploit-db3). These attacks

were then conducted against the victim in a monitored environment. Figure 2 shows part of the execution

traces.

2) Rapid 7, Metasploit, http://metasploit.com.
3) http://www.exploit-db.com.

http://metasploit.com
http://www.exploit-db.com

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:4

5FDE1FC7 lea eax, [esi-2]
5FDE1FCC jz 5fde1ff3
5FDE1FD0 mov dword ptr ss:[ebp-4], esi
5FDE1FD3 jmp 5fdda411
…
5FDE87A9 jz 5fde87b3

5FDE87B3 mov di, word ptr ds:[eax]
5FDE87A9 jz short 5FDE87A6
…………
5FDDA456 call wcscpy
77C17E99 mov ecx, dword ptr ss:[ebp+8]
77C17E9C mov edx dword ptr ss:[ebp+c]
77C17E9F mov ax, word ptr ds:[edx]
77C17EA2 mov word ptr ds:[ecx], ax
77C17EAC jnz short 77c117e9f
77C17EAE mov eax, dword ptr ss:[ebp+8]
77C17EB2 retn

77BFA2F3 call DS:[77BE1104]
// ROP code in msvcrt.dll

58FC16E2 push 4
// ROP code in AcGenral.dll

5FDDA40B cmp ax, 2eh
5FDDA40F jz 5dda420
5FDDA413 mov ax, word ptr ds:[esi]
5FDDA41b mov ebx, dword ptr ss:[ebp-4]
…
5FDE87B1 jnz 7fde87a6 // (not taken)

5FDE882E call wcscpy
// (wscpy taint trace)
5FDDA33E call wcscat
// (wscat taint trace)
5FDDA37E call sub_5FDDA3CE
// (some taint instructions)
5FDDA405 jz 5fde1fc7

Vulnerability

Exploit skeleton of
Metasploit and EMM

Exploit skeleton of
Canvas

Bogus control flow transfer

A

B C

D

E F

Figure 2 Program traces for three attacks targeting the MS08-067 vulnerability. Arrows between boxes indicate control

flow transfers that affect exploit attack routines. The bold font indicates a key instruction that is a type of exploit skeleton.

Metasploit and EMM attack samples share the same exploit skeleton, which differs from that of the Canvas attack. For the

same vulnerability, the three attacks can be classified into two categories based on their respective exploit skeletons.

From the execution traces, we found one major insight: the victim software executed identical key

instructions (i.e., bold font instructions contained in blocks connected with solid lines) that contributed

to the bogus transfer in both the Metasploit and EMM4) samples. In contrast, in the Canvas5) attack

experiment, the victim software executed different key instructions (i.e., bold font instructions contained

in blocks connected with dotted lines).

Each set of key instructions represents the manner in which an exploit works, including how the

vulnerability is triggered, how the control data or other sensitive data are tampered, and the path that

an exploit takes to achieve a bogus transfer. Therefore, such a set of key instructions can be used to

distinguish exploits.

Based on this observation, we conclude that the Metasploit and EMM samples are indeed two attacks

that implement the same exploit, even though they are written in different languages. However, the

Canvas sample implements another exploit. This conclusion is confirmed by our manual analysis.

Given that so many attacks target MS08-067 and so few share available exploits, we can ease the jobs

of security experts by building a SeismoMeter system that can map incoming attacks into families quickly

and automatically. Security experts only need pay attention to those exploits that fall into new families

and then analyze the exploits. In addition, we propose means to defend against new attacks.

3 Exploit skeleton

An exploit skeleton is a subset of a program execution trace that includes only the instructions that

contribue to a bogus control transfer. We do not use the entire program execution for two reasons. First,

the entire instruction trace of the program execution is sensitive to I/O events. A subtle I/O difference

4) EMM MS08-067 Universal Exploit, http://exploit-db.com/sploits/2008-MS08-067.rar.
5) Immunity Canvas Exploit, http://immunityinc.com.

http://exploit-db.com/sploits/2008-MS08-067.rar
http://immunityinc.com

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:5

may change program traces dramatically [24, 25].

Second, a program trace contains many instructions irrelevant to the attack. An instruction may re-

late to an attack in two ways: (1) It may be an instruction that navigates the control flow toward bogus

transfer. Such instructions include branch instructions such as br and jump and function call instructions

such as call and ret. We log call instructions when they recursively contain taint instructions and

pair them with respective ret instructions. For branch instructions, we log all jcc branches and loopcc

instructions. (2) It may be an instruction that propagates data tainted [22] by the attack input. Eventu-

ally, SeismoMeter collects all such instructions on the path of execution and outputs them as an exploit

skeleton. Irrelevant instructions have no causal relationship with the attack and should be ignored in

characterizing an attack.

In Figure 2, the traces mentioned in Section 2 are depicted using sequences of assembly code blocks.

Metasploit and EMM attacks share the same trace (A→B→C→D), but which differs from the Canvas

attack trace (A→E→C→F). In all three traces, the bogus control flow transfer occurs at line 0x77C17EB2.

They subsequently execute different malicious return oriented programming (ROP) gadgets [26]. Exploit

skeleton instructions are highlighted using bold font. For each instruction in the exploit skeleton, we

record: (1) the module name to which it belongs, (2) its offset within the module and (3) the binary

instruction itself.

We create an exploit skeleton using a backward slicing algorithm [27] on the recorded program trace,

which are decorated with taint tags that indicate the manner in which the input exploit affects the bogus

control transfer. We also record information about function invoking and loop execution based on these

tainted instructions as the major characteristics of control flow.

4 Design of SeismoMeter

4.1 Design principles

We employ the following design principles for SeismoMeter.

P1: Work on binaries. SeismoMeter should detect attacks effectively. To accomplish this, the

detection should be able to capture not only static characteristics of the target vulnerable code, but also

dynamic characteristics that are only available at runtime. In addition, SeismoMeter should function

with proprietary software, and, thus, should work on binaries directly.

P2: Sensitive, robust attack classification. The classification process must extract essential infor-

mation about an exploit and use them to classify the attacks. SeismoMeter must be able to characterize

the manner in which an exploit hijacks the vulnerable program, and discard other irrelevant noises in

the vulnerable program execution. The irrelevant noises here refer to instructions that do not participate

directly. The optimal exploit features do not contain any irrelevant noises and only consist of instructions

that directly participate in exploits.

P3: Low overhead. To become a practical system, SeismoMeter must have low overhead to be

deployed in attack detection systems such as honeypots. More specifically, the overhead for exploit

detection and classification should be sufficiently low to avoid session timeout.

4.2 SeismoMeter architecture

Figure 3 gives an overview of the SeismoMeter architecture. SeismoMeter consists of three main compo-

nents: pre-analysis, detection engine, and classification engine.

Before the vulnerable binary is run, pre-analysis extracts a list of legitimate transfer targets using a

binary preprocessor. A JIT profile contains generators that may generate legitimate transfer targets using

a JIT profiler. This information is given to the detection engine in Step 3. After the vulnerable software

launches in Step 4, the detection engine monitors the software’s execution using tracing and dumps the

execution trace for building the exploit skeleton.

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:6

6 7

8

9

5

1

2 2

3

4

Main binary

Vulnerable
software binary

Shared
binary

libraries

Binary
preprocessor

Legitimate
targets

JIT
profiler

Target
generators

Exploit

Vulnerable
software
running

Skeleton
database

Exploit
classifier

Classification engine

Tracing

aCFI
enforce

API
sandbox

Exploit detector

Traces

Skeleton
generator Skeleton

Detection enginePre-analysis

Figure 3 Overview of SeismoMeter architecture. The Preprocessor produces a whitelist by means of static binary analysis,

which is used by Exploit Detector as detection criteria. When detecting an exploit, the Skeleton Generator generates an

exploit skeleton to the Exploit Classifier, which then queries the Skeleton Database for alignment.

When an attack input arrives during Step 5, exploit detector captures the bogus transfer and notifies

skeleton generator to calculate an exploit skeleton during Step 6. The exploit classifier in classification

engine receives the exploit skeleton and performs classification based on known exploit skeletons in the

database.

5 Detection methodology

SeismoMeter runs the victim program in a controlled environment and records its execution trace. In

addition to tracing, SeismoMeter enforces the approximate Control Flow Integrity (aCFI) policy and

sandboxes the execution of sensitive APIs. Once a runtime violation of aCFI or an unexpected call

to sensitive API is detected, an alert is given regarding an exploit. Traditional whole system tracing

solutions usually introduce more than 10 times the amount of normal overhead [22,28], which is excessive

for online deployment. We port a PIN-based [29] fast dynamic taint analysis tool libdft [30] to Windows

as “dftwin” and SeismoMeter benefits considerably from it.

5.1 Tracing execution efficiently with forward taint analysis

To analyze an exploit, we must be concerned about: (1) how the attack input affects data-flow and thus

triggers the target vulnerability, (2) the path the program takes from entry to the vulnerable point and

then to the bogus control transfer, and (3) the calling context when the attack succeeds.

SeismoMeter uses forward dynamic taint flow analysis to record all instructions that participate in

propagating the input data and thus yield a much lower overhead. The taint attribute, which is originally

attached to incoming attack input such as network packets, is propagated to the rest of the system along

with the program execution. Instructions that have at least one tainted operand are logged to the trace.

In addition, for each tainted instruction, all branch instructions (e.g., jnz and jmp) from the current

function entry to the current tainted instruction and then to the function exit are all dumped to the trace

as well in order to reflect the control flow path that the exploit takes.

Moreover, for each function invocation, if at least one tainted instruction exists in the callee function’s

execution, we dump the corresponding call and ret instructions to the trace. Otherwise, this function

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:7

call is not relevant to the taint propagation and dumping can be skipped. All remaining unmentioned

instructions are not included in the trace.

Tracing stops when an exploit attack is detected (e.g., a violation of the aCFI policy is detected).

Finally, the exploit skeleton is extracted from the trace.

5.2 aCFI enforcement

To detect control flow hijacking attacks, we monitor the execution of the vulnerable program during

tracing and enforce a coarse-grained control flow integrity policy, that is, aCFI. Any violation of aCFI

reflects a control flow hijacking attack at runtime. Our aCFI policy checks the control flow integrity for

not only static code, but also JIT dynamic generated code.

Specifically, our aCFI enforcement consists of two forms of validation: (1) indirect jump/call validation,

which examines the legitimacy of targets for indirect jumps and indirect function calls, and (2) return

address validation, which strictly pairs the return address with its corresponding function call. The

exploit detector component in SeismoMeter, as shown in Figure 3, is responsible for this enforcement.

Other control flow transfer instructions, such as direct jumps, direct calls, and conditional jumps, are not

validated at runtime, because their branch targets are fixed at compile time.

To conduct return address validation, when each return instruction is executed, we compare the return

address on top of the real stack against that on top of the shadow stack. Three cases for this comparison

are as follows:

• The return address on top of the real stack matches that on top of the shadow stack. It indicates that

the control flow is not hijacked. The return address and the address of the corresponding call instruction

can then safely popped out from the shadow stack.

• The return address on top of the real stack matches one return address in the shadow stack other

than that on the top. In this case, the return address may be legal because some exception handling

schemes work in this manner. In this situation, we pop out the shadow stack until the matched return

address has also been popped out.

• The return address on top of the real stack mismatches all return addresses in the shadow stack. In

this case, the control flow integrity has been violated and a successful exploit is detected and reported.

5.3 aCFI for JIT code

The control flow integrity of JIT dynamically generated code has not been well studied. Powerful attack

techniques, such as JIT spraying [31] benefit from writable and executable memory attributes of dynam-

ically generated code. These allow makes attackers to bypass the widely deployed protections such as

address space layout randomization (ASLR) and data execution prevention (DEP) more easily.

To enforce the aCFI policy on dynamically generated code, we also must validate the transfer targets

of all indirect call/jump and return instructions. Return instructions can be validated through a shadow

stack scheme such as statically compiled code. However, for indirect call/jump instructions, we must

overcome the challenge of gathering all legitimate transfer targets that are generated at runtime, and

then validate them during execution.

Although some transfer targets of the indirect call/jump instructions are dynamically generated, the

code snippets in the JIT engine that are responsible for generating such instructions are fixed and can

be identified offline. We thus propose a novel two-step solution to solve this problem. First, we try to

identify code snippets in the JIT engine that are responsible for generating transfer targets (e.g., function

entries). These code snippets are referenced as entry generators. We then monitor the execution of these

generators, and log all generated entries at runtime. In dynamic generated code, only these generated

entries are legitimate transfer targets for indirect call/jump instructions.

Identifying entry generators: We have developed an offline program called JIT profiler, as shown

in Figure 3, to address the aforementioned problem. The JIT profiler starts the target program, loads

benign input data that may invoke the JIT engine (such as swf movies), generates a full instruction trace,

and records the memory access for each instruction. We then scan the trace and identify all indirect

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:8

002319B0 mov dword ptr [ecx], 042444C7h
002319B6 mov byte ptr [ecx+8], 0E9h
002319BA mov [ecx+9], eax

IonCode *
IonRuntime::generateEnterJIT(JSContext *cx,
EnterJitType type)
{
 MacroAssembler masm(cx);
 masm.push(ebp);

}
inline nsresult push(void* aObject)
{
 return AppendElement(aObject) ? NS_OK :
NS_ERROR_OUT_OF_MEMORY;
}

006589DC mov ebx, dword_B113C8

006589F2 or bl, 50h
006589F5 mov eax, edi
006589F7 pop edi
006589F8 mov [esi], bl

(a)

(b) (c)

…

…

Figure 4 Three types of “entry generators” in JIT engines. (a) G1; (b) G2; (c) G3.

jump/call instructions (in both static and dynamic code), whose targets fall into dynamically generated

code areas. All of these transfer targets are legitimate dynamic code entries (e.g., function entries).

Afterwards, we scan the trace again, and use the recorded memory access information to identify all

instructions that write contents to the memory of these code entries. These instructions are called entry

generators.

After profiling Microsoft Internet Explorer (IE), Adobe Flash and Firefox, we determine that only a

few dozen generators exist in each JIT engine. These generators are of the following three types (shown

in Figure 4).

• Type G1: mov mem, imm. In this type, an immediate value imm (i.e., a specific instruction) is

written to the destination code entry mem. Figure 4(a) shows such an example in Flash. The generator

here writes a fixed instruction (i.e., 042444C7h) at address ecx.

• Type G2: mov mem, fixed reg. In this type, the content of a fixed register is written to the

destination memory mem. This type of generator can write code entries on demand. Figure 4(b) shows

such a generator in Flash, in which the content of register bl is written to address of esi.

• Type G3: mov mem, variable reg. A bundle of this type of generator is usually invoked by a

wrapper function. Figure 4(c) shows an example in SpiderMonkey from Firefox. (The source code is

listed here for easy reading.) The wrapper function AppendElement then invokes underlying generators

according to its arguments. It is worth noting that this kind of generator is invoked frequently in JIT

engines not only by those wrapper functions, but also by some other functions that also write to memory.

Recognize generated indirect targets: After identifying all entry generators, we monitor the

execution of these generators to locate legal indirect transfer targets and enforce them at runtime.

When generators of type G1 and G2 are executed, the memory currently being written to is marked

as a legitimate indirect transfer target. When generators of type G3 are executed, because they may

be invoked by functions that do not write code entries, we must reconfirm that it is invoked by known

wrapper functions and it is used to write legitimate code entries. Moreover, we monitor the execution of

heap manipulating functions such as free to ensure indirect transfer target tables are updated.

Therefore, in the JIT profiler, we collect information including: (a) the value written to memory when

these generators write code entries, and (b) the functions that call these generators to write code entries.

At runtime, for a generator of type G3, we must confirm: (1) whether the written value equals any

previously known value in the JIT profile, and (2) whether the caller (or caller’s caller) matches any

previously known caller. If and only if these two criteria are both satisfied do we mark the memory that

is being written to as a legitimate indirect transfer target.

With information related to these dynamic transfer targets, the exploit detector in SeismoMeter can

enforce the aCFI policy not only for statically compiled code but also for JIT generated code. If any

indirect jump/call instruction attempts to jump to a JIT generated code area that does not belong to

recognized legitimate indirect entries, an exploit attack alarm is raised.

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:9

5.4 Beyond aCFI: API sandboxing

Although aCFI is extremely effective against shellcode-injection and return-to-libc attacks, it is incapable

of detecting call-to-libc attacks, including non-control-data attacks [20]. Such attacks usually do not

tamper control data (e.g. return addresses) directly. Instead, they may taint some sensitive data in

memory such as user IDs or commands to be executed in order to conduct attacks. Because non-control-

data attacks do not hi-jack the control flow to execute injected codes, conventional CFI enforcement

cannot detect such attacks. Furthermore, any exploit classification method based on conventional CFI

enforcement cannot classify non-control-data exploits.

To detect these kinds of attacks, the exploit detector sandboxes the execution of sensitive APIs (e.g.,

VirtualProtect and system). First, it determines whether sensitive data (e.g., parameters) are tainted

when these APIs are called. For example, if the target EIP is tainted, a typical control-flow hijacking is

detected, or, if the argument of system function is controlled by attackers, an attack alarm is also raised.

The exploit detector then performs the standard sandboxing checks to determine whether the monitored

sensitive API must write to write a system file or system registry key, or create a process abnormally

(i.e., that is not in the known legal whitelists).

6 Exploit skeleton generation and classification

As previously discussed, the exploit skeleton represents the manner in which the control flows are hijacked

by the attacker step by step. In this section, we discuss the method SeismoMeter uses to generate such

exploit skeletons and how to classify exploit skeletons.

6.1 Generation

After an exploit attack is detected, SeismoMeter stops tracing and begins extracting exploit skeletons

from dumped traces.

The backward slicing algorithm [27] is used to generate an exploit skeleton. Starting from the bogus

control transfer instruction, the algorithm tries to identify all key instructions and tainted target codes

(e.g., injected shellcode). As shown in Figure 2, key instructions are those that influence the bogus

transfer target (i.e., a return address or function pointer). Finally, the slicing algorithm obtains a subset

of the instruction trace and builds the exploit skeleton.

JIT-generated code: For instructions in the JIT-generated dynamic code section, only the opcodes

participate in the construction of the exploit skeleton. This is because instructions in JIT dynamic code

are heavily position-dependent. Therefore, their addresses and operands may be quite different, even for

instructions referring to the same exploit in different trials.

Loops: The loop structure is a major component of traces. In many exploit attack of memory

corruption vulnerabilities, the attacker tampers the boundary of the iterator and gains access to additional

memory. In program traces of such attacks, recognizing loop structures greatly helps to characterize

exploits by pinpointing vulnerability loops. SeismoMeter recognizes loops using the algorithm from [32].

It iteratively identifies nested loops. Each time a loop is executed in the trace, only one instance of this

loop is recorded, as well as the key instructions inside the loop body and the iteration count of this loop.

Skeleton size: The length of the skeleton affects the effectiveness and efficiency of our system. If the

exploit skeleton is too short, it fails to characterize exploits. By contrast, a long exploit skeleton affects

performance, especially for classification. In fact, 128 as the number of instructions, is long enough to

differentiate all samples in our experiments. However, we prefer to extend the size and choose 512 as the

skeleton size which does not generate additional performance overhead.

6.2 Classification

SeismoMeter classifies exploits into different families according to their skeleton similarities. Each skeleton

represents a string of instructions. Therefore, classic distance-measuring algorithms for sequences can be

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:10

applied for the purpose of exploit classification.

Specifically, we choose the classic Levenshtein distance [33] algorithm to compute similarities. However,

other distance-measuring algorithms also should work. Classification is processed by comparing captured

exploit skeletons to known skeletons. If the distance between the new and a previous skeleton is smaller

than a threshold, the two exploits are treated as if members of the same exploit family. According to

our experiments, different exploit families are vastly different. The threshold we choose is 15%. In other

words, if the distance of any two skeletons is greater than 15% of the size of the skeleton, they are

classified into different exploit families. Our experiment shows that threshold can distinguish different

exploit attacks efficiently. More specifically, SeismoMeter compares the 512 instructions in two exploit

skeletons and calculates their distances. When comparing instructions, three cases are used.

• JIT-generated instructions: Two JIT-generated instructions are equal to each other if and only

if their opcodes are the same.

• Instructions in loops: Instructions in a loop are compared as a whole. Only the loops (rather

than the actual instructions themselves) are compared. Two loops are equal to each other if and only if

their loop bodies are equal and their iteration counts are the same.

• Other instructions: For other normal instructions in the skeletons, they are compared using their

module names and their offsets in the modules.

Instructions of different cases are considered as different. If the final distance is smaller than the

threshold (e.g., 15%× 512), the two skeletons are classified into the same family.

7 Evaluation

We deployed SeismoMeter in both server-side and client honeypots to evaluate its accuracy. For the

dataset, we used wild-captured exploit attacks, exploits from public exploit databases, and penetration

tools. Unlike a network-level intrusion detection experimental setup, no known dataset exists that pro-

vides ground truth for exploit tests. We built testbeds and manually evaluated false positive and false

negative rates. Finally, we recorded performance data for SeismoMeter and explained its practical use in

attack detection systems, such as honeypots.

7.1 Honeypot field tests for vulnerable services

To test SeismoMeter with wild-captured exploits, we set up the field tests. Our test setup used a Cesar

FTP Server 0.99g, an Xitami HTTP server and a tftpdwin 0.4.2 that we ran as vulnerable services on

top of Windows XP SP3 (English) with Windows services and firewall disabled. SeismoMeter monitors

svchost.exe, server.exe in Cesar FTP Server, tftpd.exe in tftpdwin and xigui32.exe in Xitami

HTTP server. This experiment lasted for a single week and SeismoMeter captured 394 exploit skeletons

in six families. The Xitami http server can be attacked easily with an over-sized http request and this

http server was compromised 127 times. The Windows NetBIOS service is a popular victim in hacker

communities. We captured 255 attacks against NetBIOS, and they belonged to three different families,

containing 31, 3, 221 attacks, respectively. The Cesar FTP server attracted 10 attacks from the same

family, whereas tftpdwin server attracted two attacks from the same family.

To determine whether SeismoMeter misclassified any of these attacks, we reconfirmed their exploit

skeletons manually and confirmed the correctness of these classifications. In other words, SeismoMeter

reported 0% false positive rates during the entire course of the experiment. We could not calculate the

false negative rate of the experiment results, because no ground truth existed in our experimental setup.

7.2 Honeypot drive-by download tests

Drive-by download pages usually utilize JavaScript to launch advanced attacks. For example, their code is

usually obfuscated and may be composed of self-modification code in the attack, both of which challenge

any attack detection and analysis system. Therefore, testing SeismoMeter against drive-by download

attacks is advisable.

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:11

Table 1 Drive-by download test results

Family # Vulnerability Count Representative site

1 CVE-2010-0806 9 quanyisz.com

2 CVE-2010-0806 18 www.91linux.com

3 CVE-2010-0806 3 bisem.edu.pk

4 CVE-2010-0806 3 www.ruthenia.ru

5 CVE-2010-0249 3 q.fgjg1.cn

6 CVE-2010-0249 7 littlehanoi.cz

7 CVE-2010-0249 5 kjasoi.cn:6135

8 CVE-2010-0249 2 7ooobalrassam.jeeran.com

9 CVE-2010-0249 7 www.chinaui.com

10 CVE-2010-0249 7 yourchurchsolution.com

11 CVE-2010-0249 8 www.dvdstore-online.nl

12 CVE-2010-0249 4 bestofproductions.com

13 CVE-2010-0249 11 vip.45765.cn

For one month, we monitored landing pages from 5000 websites using a crawler infrastructure from

our previous study [34]. Within these web pages, SeismoMeter detected 103 malicious drive-by download

pages and identified the vulnerabilities they attacked. The classification results of SeismoMeter showed

that these 103 attacks fall into 27 families.

Table 1 shows the corresponding experimental results. Because of space constraints, we list only the

most representative results. In our experiment, CVE-2010-0249 and CVE-2010-0806 were the two most

attacked vulnerabilities. We witnessed each of them being attacked by multiple different exploits. Our

manual analysis confirmed that the classification results were accurate. The false positive rate remains

zero and we were unable to calculate the false negative rate. Examining all 5000 websites manually and

creating the ground truth for the experimental setup was rather difficult. In a subsequent analysis, we

sampled 300 of 5000 pages and determined whether these pages contained malicious content. As expected,

we discovered nothing malicious in these landing pages.

7.3 Effectiveness of detection

To test SeismoMeter’s ability to detect exploits, we collected 16 exploit samples from public or business

penetration tools, as well as one from Yang’s report [35] and one data-only exploit attack sample from

a wild captured drive-by download page, as listed in Table 2. We use these samples because: (a) they

belong to different categories, (b) they are popular exploits and target mostly real-world vulnerabilities

that have been attacked, and (c) we can obtain their source code and port them to our platform. In

addition, to prove that SeismoMeter can handle unseen attacks, we created a vulnerable program and

crafted an exploit for it. For this test, in addition to the exploit skeleton, we also recorded the original

network data that triggered the attacks using port mirroring on the switch and dumping the flow on a

separate server with tcpdump.

SeismoMeter successfully captured all these exploits without false negatives, as shown in Table 2.

SeismoMeter also reveals the type of final bogus transfer for each exploit. The first column in the table

lists the exploit’s target vulnerability and the second column shows the sources of these exploits. The third

column shows the victim programs’ names. The second-to-last columns indicates whether SeismoMeter

captured the exploit, and the last column shows the type of alerted bogus control transfer. In the data-

only exploit detection experiment, SeismoMeter successfully recognized a data-only attack. Here, the

generated exploit skeleton reveals the manner in which the exploit downloaded a given executable to the

victim machine and executed it.

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:12

Table 2 Exploit test results

Vulnerability Source Victim program Captured Bogus control transfer

CVE-2008-2463 Metasploit Internet Explorer 6
√

indirect call to bogus function

CVE-2006-2961 Metasploit Cesar FTP Server 0.99g
√

return to bogus address

CVE-2006-4948 Metasploit tftpdwin 0.4.2
√

return to bogus address

CVE-2007-5067 Metasploit Xitami HTTP server v2.5b6
√

return to bogus address

CVE-2009-0075 Metasploit Internet Explorer 7
√

indirect jump to bogus address

CVE-2009-0075 Canvas Internet Explorer 7
√

indirect jump to bogus address (JIT)

CVE-2010-0806 Metasploit Internet Explorer 6
√

indirect jump to bogus address

OSVDB-62134 Metasploit EasyFTP Server 1.7.0.11
√

return to bogus address

CVE-2006-6184 Metasploit Allied Telesyn TFTP Server 1.9
√

return to bogus address

CVE-2008-1610 Metasploit Quick FTP Pro 2.1
√

return to bogus address

CVE-2008-4250 Metasploit Windows Server Service
√

return to bogus address

CVE-2006-3439 Canvas Windows Server Service
√

return to bogus address

CVE-2003-0352 Canvas Windows Server Service
√

return to bogus address

CVE-2003-0818 Metasploit Windows Server Service
√

return to bogus address

CVE-2013-0634 Canvas Acrobat Flash
√

return to bogus address

CVE-2012-1529 Yang Yu [35] Internet Explorer 9
√

GIFT attack

Composed Composed test vuln
√

return to bogus address

CVE-2007-4105 Wild Captured Internet Explorer 6
√

Data-only attack

Table 3 How skeleton length affects classification results

Length
Canvas vs. Metasploit Poly. vs. Metasploit

Dist. Norm Dist. (%) Dist. Norm Dist. (%)

1 0 0 0 0

4 0 0 0 0

16 2 12.50 0 0

64 44 68.75 12 18.75

128 103 80.46 75 58.60

512 485 94.70 430 83.98

Table 4 Classification results using different lengths

Length Min. Avge. Norm Min. (%) Norm Avge. (%)

1 0 0 0 0

4 0 0 0 0

16 2 3.44 12.50 21.50

64 9 21.29 14.06 33.27

128 21 73.20 16.40 57.18

256 146 195.25 57.03 76.26

512 402 435.60 78.51 85.08

7.4 Good length for an exploit skeleton

To classify exploits efficiently and effectively by comparing exploit skeletons, the length of exploit skeletons

should be carefully determined. As an example, we evaluate the well-known MS08-067 exploits and

identify an appropirate length of an exploit skeleton, as shown in Table 3.

We compare exploit skeletons generated by the Canvas and Metasploit samples. The first column

in Table 3 lists different lengths of exploit skeletons, and the second and third columns show the edit

distances and normalized edit distances, respectively, of Canvas and Metasploit exploits. The fourth and

fifth columns list similar results comparing the Metasploit and polymorphous exploits6). In this case

study, we determined that the last four instructions in exploit skeletons were the same in all runs. This

means that we cannot use only the last few instructions to classify exploits.

We manually collected 31 exploit pair samples, and each sample contained two exploits that target

the same vulnerability but in different families. Based on these samples, we calculated the pairwise edit

distances. The results are shown in Table 4. The table shows that the last four instructions are always

the same. However, the distances become distinct when the exploit skeleton length reaches 16 or longer.

From the results, we learn that an exploit skeleton length of 128 and a 15% normalized edit distance are

sufficient for the classification algorithm. Because the length of exploit skeletons also affects performance

6) Polymorphours MS08-067 Exploit http://www.exploit-db.com/exploits/7104.

http://www.exploit-db.com/exploits/7104

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:13

Table 5 File transfer performance results

Software Protocol Mode
Vanilla run SeismoMeter nullpin

Time (s) Time (s) Overhead Time (s) Overhead

Cesar FTP FTP Server 6.84 9.51 1.39x 8.52 1.25x

tftpdwin TFTP Server 8.52 11.97 1.40x 9.63 1.13x

WinSCP SFTP Client 9.3 13.85 1.49x 12.41 1.33x

wget HTTP Client 7.38 9.1 1.23x 8.85 1.20x

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13

Si
te

 c
ou

nt

Performance overhead (x)

Figure 5 Web browsing performance result.

overhead, long lengths slow down SeismoMeter. However, SeismoMeter was proven to be sufficiently fast

in real-world experiments. Therefore, we used 512 as the skeleton length and 15% as the threshold. We

also determine that the exploit skeleton is extremely stable on the same exploit and is vastly different

from exploit to exploit. This reveals that the seed of each family affects the class poorly. The chosen of

seed exploit skeleton would not modify the results of the classification algorithm.

7.5 Performance evaluation

File transfer performance. We measure SeismoMeter’s performance by means of file uploading and

downloading. The single file we use is a randomly chosen 76-MB binary file. We measure the transfer

time using three types of actions: (1) vanilla runs without SeismoMeter, (2) runs using SeismoMeter,

and (3) monitoring system performance using PINs default mode nullpin [30]. Table 5 lists the results.

The performance overhead of SeismoMeter is between 1.23x and 1.49x, which is fast for a dynamic taint-

tracking system with a tracing ability. Existing tainting-analysis based detection approaches [22] such as

Dytan [36] is 50x, and the instruction instrumentation mode of Ether [28] is more than 100x. SeismoMe-

ter combines of dynamic taint analysis and aCFI. Thus, the performance overhead of SeismoMeter is

incomparable to that of other CFI enforcements, because the performance overhead is mainly determined

by taint analysis, instead of aCFI enforcement. The reason SeismoMeter is so fast is because it uses one

of the fastest userland dynamic data-flow analysis tools [30] as a core component. Algorithms used in

SeismoMeter also produced low performance overhead. Combining these algorithms enables SeismoMeter

to be practical and deployable with good performance.

Browser benchmark. We script IE 9 running SeismoMeter to browse Alexa top 100 websites and

presented the performance data in Figure 5. The X-axis indicates the performance overhead and the

Y -axis indicates the number of sites that experience the corresponding amount of overhead. The websites

that generate small performance overheads are mostly search engines, such as Google, and sites that show

login pages. In addition, 11 websites were browsed that incur extremely high performance overhead. The

maximum performance overhead is approximately 36x (qq.com). This site contains too much information

and numerous ads and scripts. This performance reveals that SeismoMeter is practical for use in honeypot

environments to capture attacks. Similar systems [36, 37] claim that performance overhead ranges from

30x to 1000x. Although browsing overhead occurs when analyzing a drive-by download page, we believe

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:14

SeismoMeter benefits security experts considerably as a result of its automatic analysis and scalable

deployment. SeismoMeter neither claims to be a real-time threat protection system nor does it help

security experts understand incoming attacks quickly. However, once deployed, SeismoMeter operates

automatically, requiring no scalability for large deployments. Our study shows that a single SeismoMeter

instance is capable of analyzing 30000–40000 page per day. A server with a moderate configuration can

run 20 instances of SeismoMeter, which is acceptable in practical client-side honeypot systems.

8 Related work

8.1 CFI based exploit detection

CFI [38] is an important approach for improving software security and detecting attacks. Native Client [39]

guarantees that indirect control flow will target an aligned address in a text segment, whereas SeismoMeter

provides finer-grained and JIT-supported CFI protection. SeismoMeter collects legitimate jump targets

by parsing PE files and is more precise than XFI [40] and BGI [41]. Existing CFI approaches often

require that software source code to available. Hypersafe [42] enforces CFI for hypervisors. Hypersafe

works as an LLVM [43] component and requires that the hypervisor recompiled. Control-Flow Locking

(CFL) [44], limits the control flow by lock/unlock on branch/call/ret instructions. In addition, it must

then recompile the program to protect CFI. By contrast, in terms of exploit detection and classfication,

SeismoMeter works on exploit traces directly and does not require access to the exploit’s source code.

8.2 Attack signature generation

Existing attack signature generation systems such as [3, 12, 45] comprise two approaches: (a) network-

based, and (b) vulnerability based. Network based approaches such as [46] attempt to detect malicious

network flows. However, they rely on static or emulation based shellcode detection algorithms that can

be bypassed by some sophisticated attacks [16–18,47]. By contrast, SeismoMeter reads instruction traces

and focuses on those instructions that directly contribute to the bogus control transfer. This approach

is immune to attacks using obfuscation and does not require a training process. Compared to Meta-

Symploit [48], SeismoMeter does not require exploit’s source code, which is hard to obtain in actuality.

Brumley’s work generates attack signatures using dynamic symbolic execution based analysis [49,50]. The

vulnerability-specific signature can describe precisely the triggering conditions of certain vulnerabilities.

These kind of attack signatures can determine whether an input triggers a certain vulnerability. Howev-

er, it cannot classify exploits, since malicious inputs generated by different exploits may share the same

vulnerability-specific signature. Moreover, its performance overhead is comparatively high. SeismoMeter

overcomes such problems effectively.

8.3 Exploit classification

The WOMBAT project [15] classifies exploits based on network data such as source IP and attack pay-

loads. However, exploits may be encrypted or obfuscated at the network level [16–18]. PointerScope [14]

provides automatic characterization of multi-stage exploits. It identifies major attack steps as pointer mis-

uses by performing dynamic type inference on the execution of the attacked program, and then generates

an attack graph to characterize the exploit. Although this approach is generally effective, PointerScope

suffers from two drawbacks compared to SeismoMeter: (1) eliminating false positives is difficult because

innocent type conflicts are prevalent during benign program execution, and (2) it is not efficient because

it performs type checks and propagation during the execution of each single instruction.

Shield [46] classifies exploits by describing the state machine of a vulnerability. Shield recognizes ex-

ploit attacks over the transport layer. Manually written policy is required for the filtering process. A

similar approach by Argos [1] provides exploit attack signature generation. However, unlike SeismoMe-

ter, the signature generated by Argos only concerns the network package characteristics. Polygraph [51]

characterizes exploits by recognizing the invariants of exploits and generating network based signatures.

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:15

ARBOR [52] also generates signatures from network packets and focuses only on buffer overflow vulnera-

bilities. Liang’s follow-up study [53] uses a similar idea and generates signatures based on message length

and contents. Compared to these other studies, ours is not limited to certain vulnerabilities, and is not

limited to analyzing network-based signatures.

9 Conclusion

In this study, we presented SeismoMeter, an accurate and efficient exploit capturing and classifying

system. SeismoMeter work on binaries directly by combining static binary analysis and dynamic bina-

ry instrumentation technique. SeismoMeter enforces the approximate CFI extracted from binary code

modules, and provides JIT dynamic CFI validation using a novel approach. In addition, to detect accu-

rately and robustly classify exploits, SeismoMeter computes and performs alignment checking on exploit

skeletons. Our experiment results with both public available exploit samples and wild-captured attack

incidents demonstrate that SeismoMeter is effective in detecting and classifying real world exploits. We

believe that SeismoMeter is a practical system and can be deployed in real world honeypots.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61402125, 61572149).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Portokalidis G, Slowinska A, Bos H. Argos: an emulator for fingerprinting zero-day attacks for advertised honeypots

with automatic signature generation. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on

Computer Systems. New York: ACM, 2006. 15–27

2 Bailey M, Cooke E, Watson D, et al. A hybrid honeypot architecture for scalable network monitoring. University of

Michigan Technical Report CSE-TR-499-04. 2006

3 Kreibich C, Crowcroft J. Honeycomb: creating intrusion detection signatures using honeypots. ACM SIGCOMM

Comput Commun Rev, 2004, 34: 51–56

4 Spitzner L. Honeypots: concepts, approaches, and challenges. In: Proceedings of the 45th Annual Southeast Regional

Conference. New York: ACM, 2007. 321–326

5 Diebold P, Hess A, Schäfer G. A honeypot architecture for detecting and analyzing unknown network attacks. In: Pro-

ceedings of Kommunikation in Verteilten Systemen (KiVS). Berlin: Springer, 2005. 245–255

6 Nazario J. PhoneyC: a virtual client honeypot. In: Proceedings of the 2nd USENIX Conference on Large-scale Exploits

and Emergent Threats: Botnets, Spyware, Worms, and More. Berkeley: USENIX Association, 2009. 6

7 Cole E. Advanced Persistent Threat: Understanding the Danger and How to Protect Your Organization. Mas-

sachusetts: Syngress, 2012. 18–25

8 Cowan C, Pu C, Maier D, et al. StackGuard: automatic adaptive detection and prevention of buffer-overflow attacks.

In: Proceedings of the 7th Conference on USENIX Security Symposium. Berkeley: USENIX Association, 1998. 346–335

9 Microsoft Corp. Data Execution Prevention. Microsoft Knowledge Base KB875352. 2013

10 PaX Team. PaX Address Space Layout Randomization (ASLR). Pax Team Report. 2003

11 Crandall J, Su Z D. On deriving unknown vulnerabilities from zero-day polymorphic and metamorphic worm exploits.

In: Proceedings of the 12th ACM Conference on Computer and Communications Security. New York: ACM, 2005.

235–248

12 Li Z, Sanghi M, Chen Y, et al. Network-based and attack-resillient lenght signature generator for zero-day polymorphic

worms. In: Proceedings of the 15th IEEE International Conference on Network Protocols. Calfornia: IEEE Computer

Society, 2007. 164–173

13 Joshi A, King S, Dunlap G, et al. Detecting Past and Present Intrusions Through Vulnerability-specific Predicates.

In: Proceedings of the 20th ACM Symposium on Operating Systems Principles. New York: ACM, 2005. 91–104

14 Zhang M W, Prakash A, Li X L, et al. Identifying and analyzing pointer misuses for sophisticated memory-corruption

exploit diagnosis. In: Proceedings of the 19th Annual Network and Distributed System Security Symposium. Virginia:

Internet Society, 2012

15 Dacier M, Leita C, Thonnard O, et al. Cyber Situational Awareness. Berlin: Springer, 2010. 130–136

16 Fogla P, Sharif M, Perdisci R, et al. Polymorphic blending attacks. In: Proceedings of the 15th USENIX Security

Symposium. Berkeley: USENIX Association, 2006. 241–256

17 Gundy M, Balzarotti D, Vigna G. Catch me if you can: evading network signatures with web-based polymorphic

worms. In: Proceedings of the 1st USENIX Workshop on Offesive Technologies. Berkeley: USENIX Association,

2007. 7

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:16

18 Bania P. Evading network-level emulation. Computing Research Repository, 2007. abs/0906.1

19 Szekeres L, Payer M, Wei T, et al. Sok: eternal war in memory. In: Proceedings of the 2013 IEEE Symposium on

Security and Privacy. Washington DC: IEEE Computer Society, 2013. 48–62

20 Chen S, Xu J, Sezer E, et al. Non-control-data attacks are realistic threats. In: Proceedings of the 14th Conference

on USENIX Security Symposium. Berkeley: USENIX Association, 2005. 12–24

21 Abadi M, Budiu M, Erlingsson U, et al. Control-flow integrity. In: Proceedings of the 12th ACM Conference on

Computer and Communications Security. New York: ACM, 2005. 340–353

22 Schwartz E J, Avgerinos T, Brumley D. All you ever wanted to know about dynamic taint analysis and forward

symbolic execution (but might have been afraid to ask). In: Proceedings of the 31st IEEE Symposium on Security and

Privacy. Washington DC: IEEE Computer Society, 2010. 317–337

23 Symantec Corporation. Internet security threat report. Symantec Corporation Technical Report. 2012

24 Dunlap G, King S, Cinar S, et al. ReVirt: enabling intrusion analysis through virtual-machine logging and replay.

In: Proceedings of Symposium on Operating Systems Design and Implementation. New York: ACM, 2002. 211–224

25 Xu M, Malyguin V, Sheldon J, et al. Retrace: collecting execution trace with virtual machine deterministic replay.

In: Proceedings of the 3rd Annual Workshop on Modeling, Benchmarking and Simulation. New York: ACM, 2007.

4–24

26 Shacham H. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86). In: Pro-

ceedings of the 14th ACM Conference on Computer and Communications Security. New York: ACM, 2007. 552–561

27 Agrawal H, Horgan J, Krauser E, et al. Incremental regression testing. In: Proceedings of the Conference on Software

Maintenance. Washington DC: IEEE Computer Society, 1993. 348–357

28 Dinaburg A, Royal P, Sharif M, et al. Ether: malware analysis via hardware virtualization extensions. In: Proceedings

of 15th ACM Conference on Computer and Communications Security. New York: ACM, 2008. 51–62

29 Luk C, Cohn R, Muth R, et al. Pin: building customized program analysis tools with dynamic instrumentation.

In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation. New

York: ACM, 2005. 190–200

30 Kemerlis V, Portokalidis G, Jee K, et al. libdft: practical dynamic data flow tracking for commodity systems. In: Pro-

ceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments. New York: ACM, 2012.

121–132

31 Blazakis D. Interpreter exploitation. In: Proceedings of the 4th USENIX Conference on Offensive Technologies. Berke-

ley: USENIX Association, 2010. 1–9

32 Wei T, Mao J, Zou W, et al. A new algorithm for identifying loops in decompilation, In: Proceedings of the 14th

International Conference on Static Analysis. Berlin/Heidelberg: Springer-Verlag, 2007. 170–183

33 Levenshtein V. Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl, 1966, 10: 707–710

34 Chen K Z J, Gu G F, Zhuge J W, et al. WebPatrol: automated collection and replay of web-based malware scenarios.

In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security. New York:

ACM, 2011. 186–195

35 Yu Y. DEP/ASLR bypass without ROP/JIT. 13th Annual CanSecWest Conference Report. 2013

36 Clause J, Li W C, Orso A. Dytan: a generic dynamic taint analysis framework. In: Proceedings of the 2007 International

Symposium on Software Testing and Analysis. New York: ACM, 2007. 196–206

37 Tucek J, Newsome J, Lu S, et al. Sweeper: a lightweight end-to-end system for defending against fast worms. In: Pro-

ceedings of ACM SIGOPS/EuroSys European Conference on Computer Systems. New York: ACM, 2007. 115–128

38 Abadi M, Budiu M, Erlingsson U, et al. Control-flow integrity principles, implementations, and applications. ACM

Trans Inform Syst Secur, 2009, 13: 1–40

39 Yee B, Sehr D, Dardyk G. Native client: a sandbox for portable, untrusted x86 native code. In: Proceedings of the

2009 30th IEEE Symposium on Security and Privacy. Washington DC: IEEE Computer Society, 2009. 79–93

40 Erlingsson U, Valley S, Abadi M, et al. XFI: software guards for system address spaces. In: Proceedings of the 7th

Symposium on Operating Systems Design and Implementation, Berkeley: USENIX Association, 2006. 75–88

41 Castro M, Costa M, Martin J, et al. Fast byte-granularity software fault isolation, In: Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles, New York: ACM, 2009. 45–58

42 Wang Z, Jiang X X. HyperSafe: a lightweight approach to provide lifetime hypervisor control-flow integrity. In: Pro-

ceedings of the 2010 31st IEEE Symposium on Security and Privacy. Washington DC: IEEE Computer Society, 2010.

380–395

43 Lattner C, Adve V. LLVM: a compilation framework for lifelong program analysis & transformation. In: Proceedings

of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Optimization.

Washington DC: IEEE Computer Society, 2004. 75–86

44 Bletsch T, Jiang X X, Freeh V. Mitigating code-reuse attacks with control-flow locking. In: Proceedings of the 27th

Annual Computer Security Applications Conference. New York: ACM, 2011. 353–362

45 Wang L J, Li Z C, Chen Y, et al. Thwarting zero-day polymorphic worms with network-level length-based signature

generation. Trans Netw, 2010, 18: 53–66

46 Wang H J, Guo C X, Simon D R, et al. Shield: vulnerability-driven network filters for preventing known vulnerability

exploits. In: Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications. New York: ACM, 2004. 193–204

47 Mason J, Small S, Monrose F, et al. English shellcode. In: Proceedings of the 16th ACM Conference on Computer

and Communications Security. New York: ACM, 2009. 524–533

Ding Y, et al. Sci China Inf Sci May 2017 Vol. 60 052110:17

48 Wang R W, Ning P, Xie T, et al. Metasymploit: day-one defense against script-based attacks with security-enhanced

symbolic analysis. In: Proceedings of the 22nd USENIX Conference on Security. Berkeley: USENIX Association, 2013.

65–80

49 Newsome J, Brumley D, Song D. Vulnerability-specific execution filtering for exploit prevention on commodity software.

In: Proceedings of the 13th Symposium on Network and Distributed System Security. Virginia: Internet Society, 2005

50 Newsome J, Brumley D, Song D. Towards automatic generation of vulnerability-based signatures. In: Proceedings of

the 27th IEEE Symposium on Security and Privacy. Washington DC: IEEE Computer Society, 2006. 2–16

51 Newsome J. Polygraph: automatically generating signatures for polymorphic worms. In: Proceedings of the 2005 IEEE

Symposium on Security and Privacy. Washington DC: IEEE Computer Society, 2005. 226–241

52 Liang Z K, Sekar R. Automatic generation of buffer overflow attack signatures: an approach based on program

behavior models. In: Proceedings of the 21st Annual Computer Security Applications Conference. Washington DC:

IEEE Computer Society, 2005. 215–224

53 Liang Z K, Sekar R. Fast and automated generation of attack signatures: a basis for building self-protecting servers.

In: Proceedings of the 12th ACM Conference on Computer and Communications Security. New York: ACM, 2005.

213–222

	Introduction
	Motivating example
	Exploit skeleton
	Design of SeismoMeter
	Design principles
	SeismoMeter architecture

	Detection methodology
	Tracing execution efficiently with forward taint analysis
	aCFI enforcement
	aCFI for JIT code
	Beyond aCFI: API sandboxing

	Exploit skeleton generation and classification
	Generation
	Classification

	Evaluation
	Honeypot field tests for vulnerable services
	Honeypot drive-by download tests
	Effectiveness of detection
	Good length for an exploit skeleton
	Performance evaluation

	Related work
	CFI based exploit detection
	Attack signature generation
	Exploit classification

	Conclusion

