
PHPGate: A Practical White-Delimiter-Tracking Protection against
SQL-Injection for PHP

Lihua Zhang1 Yu Ding1 Chao Zhang2 Lei Duan1 Zhaofeng Chen1 Tao Wei1 Xinhui Han1
1Peking University 2UC Berkeley

SQL injection has a long history as a dangerous threat,
grabbing lots of security researchers’ attentions. Howev-
er, it is still ranked the first of the ten most dangerous
web application threats by OWASP since 2008, indicat-
ing a big gap between researches and industry practice.

Most SQL injection vulnerabilities are introduced by
ignorance or negligence, so a good protection solution
should be “fool-proof”. To be used in day-to-day deploy-
ment, it should also have little performance overhead.

In this paper, we propose a white-delimiter-tracking
defense solution against SQL injections: unlike typical
taint-tracking solutions that track user inputs or all SQL
related strings hard-coded in web applications, we only
track the SQL delimiters in these hard-coded strings, and
only allow these delimiters to be used in the final SQL s-
tatements. Furthermore, instead of allocating extra shad-
ow memory for taint tracking, we encode the tracking
information directly into the same byte as the delimiters
by utilizing the characteristics of UTF-8 encoding.

This solution tracks much less data than existing solu-
tions and keeps the accuracy of byte-level taint tracking.
A prototype called PHPGate is implemented on the PHP
Zend engine. PHPGate can protect UTF-8 encoding web
applications from real world SQL injection attacks and
only introduces a performance overhead less than 1.5%.

Architecture Figure 1 shows the framework and the
workflow of PHPGate. The Zend engine’s compiler
will invoke PHPGate’s taint introduction module to mark
hard-coded delimiters as white and encode them (step 5);
its executor will cooperate with PHPGate’s taint propa-
gation module to propagate the taint information (step
7); and the executor will invoke the PHPGate’s security
validating module to validate SQL query strings (step 8)
before sending them to the backend database (step 9).

White-Delimiter-Tracking PHPGate uses taint analy-
sis to differentiate user inputs from legitimate strings in
applications. Unlike traditional dynamic taint analysis
which marks user input as tainted, PHPGate marks char-
acters hard-coded in applications which are parts of a
SQL query string as tainted. Moreover, only delimiter
characters (e.g., quotation marks) that affect the struc-
ture of SQL query strings are marked as tainted and are
tracked. These delimiter characters hard-coded in appli-
cations are called white-delimiters in this paper.

Taint Tracking with UTF-8 Encoding Some codes
(e.g., those of the form 10xx xxxx) are not used by
UTF-8 encoding. So, neither user inputs nor hard-coded
strings will use these codes. PHPGate then encodes each
white-delimiter to a unique code reserved by UTF-8, for
further taint tracking and security validating.

In this way, PHPGate only needs to track and encode
a few fixed characters and keeps original strings’ lengths
unchanged. It thus introduces a much less performance

User

1.Request
with

parameters

11.Response

Web Server
(Apache/Nginx)

PHPGATE

PHP Zend VM

Compiler

Zend API

Executer

initialization
and shutdown

4.begin
comilation

Taint
Introduction

initia
and sh

Ta
Introd

5.mark
 trusted

character

Exeption
Handler

Taint Propagation

Security Validating
Log Module

Exeption
Handler

Log Module

6.begin
executionn

7.taint marks
propagate

ation

8.filter untrusted
characters

Data Base

9.use filtered
query string

to access
database

3.set PHPGATE
hook point

2. send request
to PHP engine

10. clean work

Figure 1: Architecture of PHPGate

overhead. The taint tags (i.e., encoded delimiters) will
remain intact along with the applications’ execution until
reaching the boundary point where the SQL query will be
sent to backend database or to other modules. We also
modify the regular expression modules to adapt to this
white-delimiter encoding scheme.
Security Validating At the boundary point, a security
validator is deployed. It will check untrusted user input
in SQL queries to find whether there are non-encoded de-
limiters used in SQL query strings. And if so, the valida-
tor will then replace them with SQL escape sequences.
The encoded white-delimiter characters in SQL query
strings are also changed back to corresponding original
characters. As a result, only legitimate SQL queries will
be sent to the backend database, leaving the structure of
the SQL query string unchanged.
Preliminary Results We have built a prototype of
PHPGate as a PHP plugin in a LAMP-based environ-
ment, and tested several popular PHP applications in
our framework. The performance overhead of PHPGate
is only 1.28%. Other PHP solutions introduce much
higher overhead, e.g., PHP Aspis’s overhead is more
than 220%[2] and Ding Xiang’s solution introduces
28%-38% overhead[1]. Also, we tested SQL injection
attacks found in exploit-db, including exploits which
targets OSVDB-103365/103126, CVE-2013-6936/2007-
4653/2003-1244 etc. Results show that PHPGate can suc-
cessfully block all these attacks.

References
[1] X. Ding, Y. Qiu, and T. Zheng. A method to defend

sql injection based on php. Computer Engineering,
37(11):152–154,157, June 2011.

[2] I. Papagiannis, M. Migliavacca, and P. Pietzuch. Php
aspis: Using partial taint tracking to protect against
injection attacks. In Proc of the 2nd USENIX Con-
ference on Web Application Development, Jun 2011.

Yu Ding

