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Abstract

We look into the issue that the amount of entropy kept by
the pseudorandom number generator (PRNG) of Android is
constantly low. We find that the accusation against this issue
of causing poor performance and low frame rate experienced
by users is ungrounded. We also investigate possible security
vulnerabilities resulting from this issue. We find that this issue
does not affect the quality of random numbers that are gener-
ated by the PRNG and used in Android applications because
recent Android devices do not lack entropy sources. However,
we identify a vulnerability in which the stack canary for all
future Android applications is generated earlier than the PRNG
is properly setup. This vulnerability makes stack overflow
simpler and threats Android applications linked with native
code (through NDK) as well as Dalvik VM instances. An
attacker could nullify the stack protecting mechanism, given
the knowledge of the time of boot or a malicious app running
on the victim device. This vulnerability also affects the address
space layout randomization (ASLR) mechanism on Android,
and can turn it from a weak protection to void. We discuss in
this paper several possible attacks against this vulnerability as
well as ways of defending. As this vulnerability is rooted in
an essential Android design choice since the very first version,
it is difficult to fix.

I. INTRODUCTION

A. Motivation

Our motivation roots in an issue reported to the Android
Open Source Program [1] , which complained about the
constantly low amount of entropy kept by the PRNG af-
fected the overall performance and user experience, causing
low frame rate in the UI layer. There was a solution pro-
posed by the XDA community which periodically wrote into
/dev/random. The idea behind the solution is that the lag is
attributed to the blocking read of /dev/random; writing into
/dev/random raises the amount of entropy and processes
blocking on /dev/random then get unblocked.

We first want to investigate whether this accusation is
grounded and whether the solution does any help, since the
solution, as described by some users, resolved the long-lived
lagging UI issue of Android.

Furthermore, this issue reminds us the identical or factorable
RSA private keys vulnerability prevalent among embedded
devices which lack sources of entropy and have constantly
low amount of entropy [6]. We want to know if there is

a similar vulnerability on the Android devices, which could
also lack entropy sources during boot, especially during their
first boot: the applications which require high quality random
numbers, such as a disk encryption application, get predictable
or identical results from the PRNG.

B. Linux PRNG and Our Assumption

Android runs on a Linux kernel. The /dev/random and
/dev/urandom devices are backed by the Linux PRNG.
Figure 1 shows its general structure [5]. In this section, we
briefly describe how it works and its properties related to our
work.

The Linux PRNG consists of three entropy pools which
act in a same manner. They have two major functions: mix
entropy into the pool and extract entropy from the pool. The
input pool (also known as the primary pool) gets entropy from
three types of entropy sources: disk, interrupt and input events.
When an event happens in a source, the source feeds the
timing and the type of the event to the input pool. The two
output pools (secondary pools) get their entropy by extracting
entropy from the input pool. The blocking pool blocks upon
no entropy in both its pool and the input pool while the
non-blocking pool does not. An important property of the
non-blocking pool is that it does not extract any entropy if
the amount of entropy in the input pool is less than 192
(random_read_wakeup_thresh * 3 / 8) bits. When
there is no entropy mixed into the non-blocking pool, its output
is deterministic and predictable given any of its internal states
between the last entropy mix and the number of extractions
from it.

The three pools are initialized when the kernel initializes
the random character device. On initialization, the pools are
not wiped and the time and machine information are mixed
in. Under traditional Linux environment, there is an init script
which reads the saved random seed from the disk and mixes
it into the nonblocking pool.

Our assumption on Linux PRNG is the following: after the
first time when /dev/urandom extracts enough entropy (for
example, the minimum amount of extraction, 60 bits) from the
input pool, /dev/urandom is secure. It makes no difference
that the amount of entropy is low or high after this time point.

The rest of the paper is organized as follows. In section
2, we introduce existing work on analyzing Linux PRNG
and the low entropy issue, as well as the work aiming at
exploiting or defending buffer overflow. Section 3 describes
our investigation methodology. Section 4 shows the result of
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Fig. 1: General Structure of Linux PRNG

our investigation, revealing several vulnerabilities. In Section
5 we discuss the effect of these vulnerabilities and possible
attacks and defenses. Finally, in section 6 we draw our
conclusion.

II. RELATED WORK

Previous work was done to analysis the security of the Linux
PRNG, especially the non-blocking pool, from a cryptographic
point of view [5]. It showed that given the internal state
not known to the attacker, predicting the output of the non-
blocking pool is as hard as reversing the SHA-1 hash function,
even if there is not any entropy mixed in. We base our work
on this assumption and do not want to challenge it.

There was also work focusing on what could happen be-
fore /dev/urandom being properly seeded and its internal
state being completely unpredictable and unknown to the
attacker. [6] successfully caught such a vulnerability that
on some embedded devices the ssh-keygen was invoked
before /dev/urandom was ready, resulting in identical
or factorable RSA private keys. Our goal is to find if a
similar vulnerability exists on Android devices which are
more complicated and not investigated. And our result and
conclusion turn out to be different from that for embedded
devices: we find that the user applications do not suffer from
the low entropy issue while it is the buffer overflow protecting
mechanisms, implemented in the kernel and other parts of
Android framework that suffer from it.

Stack canary [4] is an protecting mechanism that can detect
buffer overflow on the stack and terminate the program before
attacker taking control of it. It works by putting several bytes
in the stack frame, right before the return address and checking
if the contents are changed before the function returns. Two
major types of canaries are proposed: 1) terminator canary: it
contains terminator characters on which the string operations
stops and 2) random canary. Android platform has random
canary implemented since version 4.0. As shown in section 4,
we identified a vulnerability that the attacker could know the
canary value of all Android apps by installing a malicious app
or simply guess the canary with the cost not depending on the
length of the canary.

Device Kernel Version Android Version
Nexus 4 3.0.31 4.2.2
Nexus 7 3.1.10 4.2.2
Galaxy Nexus 3.4.0 4.2.2

TABLE I: Experiment Devices and Their Software Versions

Address space layout randomization (ASLR) was proposed
and researched in some work. [8] showed that on an 32-bit
architecture ASLR could do little help. Our work confirms
further this point: the ASLR implemented in Linux for the arm
architecture provides only 8 bits of entropy for each mapped
memory range and the base addresses could be leaked in a
similar way in which the canary leaks.

III. METHODOLOGY

A. Experiment Devices

We used three devices to run the experiments in the follow-
ing sections. Table I shows the device names and their software
versions. Although they all runs Android 4.2.2, we claim that
the vulnerable code in Android framework (Zygote.java)
has changed little and functions in a similar way in all Android
versions since the beginning of the Android Open Source
Project [2].

B. Performance

To establish link between the poor performance and the
PRNG, we need to find out which processes would read from
the random devices.

We investigate this issue by both statically searching refer-
ences of /dev/urandom and /dev/random in the source
code of Android framework and instrumenting the kernel to
capture every read of these two devices and every process who
reads it. As shown in the next section, the result is sufficient to
conclude that there is no causal relationship between reading
from random devices and the poor performance.

C. Security

As mentioned in the introduction to Linux PRNG, the
/dev/random device, although blocking, outputs secure
random numbers that even its internal state compromises, the



attacker still cannot predict its output, while the security of
/dev/urandom device depends on whether there is enough
entropy mixed in, and whether its internal state is not known
to the attacker. Hence we focus only on /dev/urandom.

We want to know:
1) Whether /dev/urandom is ever properly seeded:

never being properly seeded could result from the
amount of entropy never crossing the threshold of 192
bits due to lack of entropy sources combined with the
random seed not being properly saved and restored, or
in the first boot.

2) If /dev/urandom is eventually properly seeded, then
does the entropy accumulates rapidly enough so that
when any application that requires high quality random
numbers is invoked, /dev/urandom is ready.

To answer the above questions, we did the following:
1) Instrumented the kernel to capture every event that

contributes entropy to the input pool as well as the
amount of entropy before and after that event. We also
captured the events that extract entropy from the input
pool and the amount of entropy before and after them.
The time of above events, as well as the time when the
user can operate the device are recorded. With the above
result, we collected the typical amount of contribution
of the three event types.

2) With the result of 1), we investigated what processes
read from /dev/urandom before its pool getting the
first entropy mix.

3) After we found that virtually every process read from
/dev/urandom in order to set up its stack canary,
we manually read the related Linux Kernel and Android
source to to figure out how and when the canaries are
set. We also investigate the ASLR implementation on
arm architecture by source code reading.

4) After we identified the predictable canary value issue,
and found that given the same initial state, there could
be different canary values due to different scheduling
realizations, we did experiment to see how much entropy
does the scheduling bring.

IV. RESULTS AND INTERPRETATION

A. Performance
We searched in the source code of Android framework

since version 4.0 for string “/dev/random” and found
no reference to it. We also captured all read operation on
/dev/random in a daily used of a Nexus 7 tablet since
boot, and found only once: process wpa_supplicant read
from it. It is a WPA authentication helper and it uses
/dev/random to initialize its own PRNG on start.

All Android applications who want high quality ran-
dom numbers are recommended to use a Java class
named SecureRandom, which on construction read from
/dev/urandom to seed its internal generator.

These results indicate that the performance issue cannot be
attributed to blocking read of /dev/random since there are
almost none.

Device Full Boot Time (s)
Nexus 4 25.3
Nexus 7 24.8
Galaxy Nexus 29.4

TABLE II: Full Boot Time: The time it takes from when
the kernel is loaded to when the Android desktop launcher is
brought up.

There may be some links between the entropy collecting
routine and the poor performance. We noticed that since Linux
kernel 3.7, the code of the input event entropy source handler
in input subsystem has been restructured to improve the perfor-
mance on multitouch devices by batching the input events [3].
Some developers commenting on Issue 42265 also suggested
that the performance issue is due to suboptimal order of event
processing and entropy accumulation. We cannot tell if there
would be any improvement since we did not successfully
install a kernel later than 3.7 on our devices, but we do suggest
users keep their software up-to-date since the changes are quite
reasonable and promising.

B. Security

1) Entropy Sources: Figure 2 suggests that the An-
droid devices have sufficient sources of entropy. The en-
tropy contributed merely by disk events is enough to have
/dev/urandom properly seeded before any user applications
can run.

2) User Applications: Figure 2 and table II show that the
time when the user could start the first application is after
the time when the amount of entropy first crossed the 192
threshold, which means the first read from /dev/urandom
will cause the non-blocking pool to extract at least 10 bytes
(EXTRACT_SIZE defined in random.c). The 80 bits en-
tropy is enough to prevent any attacker trying to predict the
random number. There will be more entropy mixed in when
user touches or slides on the screen as shown in table 3. If
it is the first boot, users will be asked to setup the wireless
network and enter Google account information, which cause
a lot of input events and further secure the /dev/urandom
device.

Therefore we conclude that the user applications are able
to enjoy high quality random numbers from the beginning.

3) Saving and Restoring the Random Seed: Android frame-
work has a system service named EntropyMixer which re-
places the traditional init script to restore the random seed at
boot. There are two major differences between them that may
cause security issues:

• EntropyMixer is an Android service which starts after
the Android framework is initialized. Any processes
starting before are not protected by the saved entropy.
/dev/urandom is merely seeded by the time of boot
and the machine information before that.

• EntropyMixer reads /dev/urandom to save the random
seed on boot and then saves every 3 hours instead of
before rebooting or halting. This may be a better choice
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Fig. 2: Amount of Entropy Over Time: The three devices shows different profiles on entropy accumulation, but their entropy
crosses the 192 threshold quickly enough before the user interface is load up. Also note that when Zygote starts the entropy
does not cross 192, thus no entropy is mixed into /dev/urandom at that time

since cell phones are not likely to reboot or halt normally,
but it also means the amount of entropy of the saved seed
is less than or equal to the amount of entropy of the time
of first boot, if the device is rebooted within three hours
of its first boot.

4) Shared Stack Canary: We found that virtually all pro-
cesses need to read from /dev/urandom at their start. We
looked into why and found that recent Android versions since
4.0 adopted the stack protector mechanism, as known as stack
canaries to protect the native Android framework processes as
well as native code bridged by Java Native Interface in user
applications.

The stack protector works with the help of two components:
• Android NDK compiler (gcc): insert canary putting and

checking code in function prologues and epilogues. The
canary value is read from a global variable.

• The standard C library (bionic): initialize the canary
value by reading 4 bytes from /dev/urandom and put
it in a global variable. The initialization routine is a li-
brary constructor which is invoked by the dynamic linker

after the library is mapped into the process’ memory
space, typically when the process is exec()ed.

However, the way in which the canary value is initialized
could be problematic on Android platform. All system services
and user applications running on the Dalvik VM are forked
from a process called Zygote [7] (Fig 3). By leveraging the
Copy-on-Write fork on Linux, Android apps do not need to
load the Dalvik VM executable image or the shared library
repeatedly on start, leading to better performance. But it also
means that there is no chance for an app to invoke the library
constructor which sets the canary value. Therefore all Android
processes share one stack canary.

We made an app [9] to show its canary value on the screen
and compared this value to what app_process (which then
forked Zygote) read from /dev/urandom on its start. The
result verified this vulnerability.

5) Predictable Stack Canary: Combining section 4.2.3 and
4.2.4, we found that it is possible to predict the canary
value shared by all Android apps and Zygote. Note that
EntropyMixer is also a system service running on Dalvik VM
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and thus is going to be forked from Zygote. Furthermore,
figure 2 indicates that when Zygote starts no entropy is mixed
into /dev/urandom. Therefore, when Zygote sets up its
canary value, the /dev/urandom is only initialized by the
kernel with the system information and the boot time.

However in our experiment, we found the canary value was
not a constant when the initial state of /dev/urandom pool
was fixed.

We conjectured that it was due to multitasking and different
scheduling realizations, because /dev/urandom adopts a
fine grained locking scheme that maximizes parallelism. It
is possible that the internal state changes during the time
when the current reading process is descheduled. To verify
our conjecture, we modified the /dev/urandom interface
to enforce a coarse grained locking scheme so that other
processes cannot change the internal state before the current
process finishing reading. It then showed a fixed canary value
that depended only on the initial state of /dev/urandom.

Given no entropy mixed into the pool of /dev/urandom,
the internal state depends only on the number of extractions
from the pool (this is different from the number of bytes
read from /dev/urandom, because the minimum number
of bytes to extract is 10). With the non-determinism of
scheduling, we can model the canary value as a function
f(B,N) where B is the boot time and N is the number
of extractions from /dev/urandom that happened before
Zygote read from it.

B is acquired by getnstimeofday() function which
supports nanosecond resolution, but we observed only mi-
crosecond precision on our devices. B may not confirm to
a specific distribution and the attacker may have knowledge
about it in various degrees, we can only make some simple
assumptions, for example, we can assume that the attacker
knows the boot time with precision of second, then the attacker
has to guess the microsecond out of 106 values, equivalent to
20 bits of entropy.

N may confirm to some distribution because it can be seen

Fig. 4: Histogram of number of extractions from
/dev/urandom before Zygote runs: we repeatedly re-
booted a Nexus 7 for 244 times to record the number of
extractions. The result suggests a bell curve distribution of
the data which could help the attacker guess the canary value
more effciently

as a value affected by a set of independent events. In order to
characterize its distribution, we collected its realizations from
244 times of boot; the result is shown in figure 4.

If the attacker has prior knowledge of this distribution of
the number of extractions, he could guess the ranges in a
high-probability-first order, which gives an expected number
of guess of 133 in our case, equivalent to about 7 bits of
entropy.

With the above model, we can estimate that B and N
together will provide 27 bits of entropy, assuming the attacker
knows the boot time in second.

Although the computation needed to predict the value
of canary may be comparable to simply guessing the 32-
bit canary, this vulnerability nullifies the additional security
brought by extending the length of the canary. Furthermore,
the system time is not a secret number and can be leaked via
various ways.

6) Nullified ASLR: Since 4.0, Android has turned on ad-
dress space layout randomization with the support of the ker-
nel. Despite of only 8 bits of entropy is added for each mapped
region, due to the fork nature of Zygote, all Android apps share
one address layout, including the same base addresses of the
stack, the heap and the standard C library.

V. EFFECT AND POSSIBLE ATTACKS AND DEFENSE

The sharing values and predictable canary vulnerability
affects the following:

1) All Android applications using NDK: the simplest stack
overflow attacks are made possible.

2) Dalvik VM: any buffer overflow vulnerability in DVM
can be exploited with only weak defense mechanism.



3) Zygote: similar to 2), but Zygote runs as root and thus
is more profitable to exploit.

A. Possible Attacks

Possible Attack 1 (side channel / canary collector): As
all applications are sharing the stack canary and the base
addresses and these values do not change until the next boot, a
malicious application could read these values and use them to
build payload to overflow other apps running on the device.
We made an example of such an attack [9]. The malicious
application could also collect these values and send to a server.
If any buffer overflow vulnerability is found on a popular
application, the attacker could compromise many devices as
there is no stack protecting mechanism.

Possible Attack 2: guessing canary: Depending on the
resolution of the hardware timer and the knowledge the
attacker has, guessing the input of function f(B,N) may take
less time than simply guessing the canary value.

Possible Attack 3: heap overflow: Heap overflow vul-
nerabilities are more dangerous because it can circumvent
overwriting the canary. A possible heap overflow attack only
need to guess 16 bits, including the base addresses of the stack
and the heap.

B. Defense

It is relatively easy to address the predictable canary issue
by having Zygote write a new value into the global variable
holding the canary after forking a new instance of Dalvik VM.
This may bring an overhead of one page of memory due to
modification on a CoW page.

The weak ASLR protection is rather hard to fix because:
• The shared base addresses is due to fork implementation.

The Android developers choose to only fork instead of
exec after fork to avoid repeatedly mapping same files
in to the new process’ address space, for all Android apps
runs on Dalvik VM and thus need a same set of shared
libraries. There seems to be no better way to achieve
different address layouts for each forked applications
without sacrificing the performance.

• The weak protection provided by ASLR is due to the
32-bit architecture. It is hard to provide enough entropy
that is preventive for attackers to guess with brute force
without great modification to the Linux kernel.

VI. FUTURE WORK

More work could be done to further reduce the cost of
predicting the boot time and the canary value:

• Model the scheduling before Zygote starting as a stochas-
tic process may yield a better way to order the guessing
sequence and eliminate impossible values.

• Investigate if it is possible to acquire precise time of boot.
uptime could be a good start, but it only provides boot
time in second.

Also, work should be done to analyze Android application
using NDK of buffer overflow vulnerability. Most applications
use NDK in their CPU intensive routines, resulting in a

relatively narrow attack surface, however, these routines have
to exchange data with the Java code, which is most possible
for buffer overflow.

VII. CONCLUSION

We have investigated the low entropy issue on Android and
shown that the poor performance is not caused by blocking
reads to /dev/random, since there are almost none of them.
Starting from this issue, we also have investigated possible
security vulnerabilities and we have shown that the PRNGs
on Android devices provide secure pseudorandom numbers for
all user applications that requires them, because the entropy
generated during boot is enough to seed the PRNG properly.
However we have found that the stack protecting mechanism
initializes the canary value shared by all future Android
applications with a value read from the PRNG at an early
time when the PRNG is not ready. We have shown that this
vulnerability could result in less computation for guessing the
canary value, depending on the knowledge of the attacker on
the boot time. Furthermore, we have also shown that the shared
values vulnerability could leak not only the canary value
but the base addresses information, effectively nullifying the
address space layout randomization mechanism on Android.
We have discussed possible attacks against this vulnerability
and implemented one of them. In the end, we have proposed
a fix to the shared canary vulnerability and argued that the
general shared values vulnerability is difficult to fix.
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