
Towards Memory Safe Enclave Programming with Rust-SGX

Huibo Wang†1, Pei Wang∗, Yu Ding∗, Mingshen Sun∗, Yiming Jing∗, Ran Duan∗, Long Li∗,

Yulong Zhang∗, Tao Wei∗, Zhiqiang Lin‡

†The University of Texas at Dallas
∗Baidu X-Lab

‡The Ohio State University

ABSTRACT

Intel Software Guard eXtension (SGX), a hardware supported
trusted execution environment (TEE), is designed to protect security
critical applications. However, it does not terminate traditional
memory corruption vulnerabilities for the software running inside
enclave, since enclave software is still developed with type unsafe
languages such as C/C++. This paper presents Rust-SGX, an
efficient and layered approach to exterminating memory corruption
for software running inside SGX enclaves. The key idea is to enable
the development of enclave programs with an efficient memory
safe system language Rust with a Rust-SGX SDK by solving the
key challenges of how to (1) make the SGX software memory safe
and (2) meanwhile run as efficiently as with the SDK provided
by Intel. We therefore propose to build Rust-SGX atop Intel SGX
SDK, and tame unsafe components with formally proven memory
safety. We have implemented Rust-SGX and tested with a series of
benchmark programs. Our evaluation results show that Rust-SGX
imposes little extra overhead (less than 5% with respect to the SGX
specific features and services compared to software developed by
Intel SGX SDK), and meanwhile have stronger memory safety.

CCS CONCEPTS

• Security and privacy → Formal methods and theory of

security; Systems security;

KEYWORDS

SGX, Rust Programming Language, Memory Safety, Type System
Soundness

ACM Reference Format:

Huibo Wang†1, Pei Wang∗, Yu Ding∗, Mingshen Sun∗, Yiming Jing∗, Ran
Duan∗, Long Li∗, Yulong Zhang∗, Tao Wei∗, Zhiqiang Lin‡. 2019. Towards
Memory Safe Enclave Programming with Rust-SGX. In 2019 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’19), November

1The bulk of this work was done while the first author was interning at Baidu X-Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354241

11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3319535.3354241

1 INTRODUCTION

Software developed with type unsafe languages such as C/C++ is
subject to memory corruption, such as buffer overflow, integer
overflow, double free, and use after free. Memory corruption
attacks have been one of the most severe cyber threats for over
40 years. Numerous such attacks have occurred, including Morris
Worm [1], stack smashing [26], return-into-libc [35], return oriented
programming (ROP) [29] (and its variants such as BROP [10] and
JIT-ROP [31]), jump oriented programming (JOP) [11], call oriented
programming (COP) [27], and even data-oriented programming
(DOP) [16]. It is likely that these attacks will continue to remain a
major cyber threat for years to come.

Several years ago, Intel introduced Software Guard eXtensions
(SGX) in its Skylake CPU, which provides application programmers
the capability to execute code in a secure enclave, namely an
isolated trusted execution environment (TEE) [24]. In particular,
SGX isolates sensitive code and data from the operating systems,
hypervisors, BIOS, and other applications. It guarantees confiden-
tiality and integrity of enclave programs even when the systems
software such as operating systems, hypervisors, and BIOS are
compromised. However, SGX hardware does not guarantee any
memory safety for the software running inside enclave, since they
are still developed with memory unsafe languages such as C/C++
or assembly today.

As a result, SGX programs still face the traditional memory
corruption vulnerabilities as does traditional software. This can
seriously undermine the security guarantee provided by SGX, and
allow attackers to violate the integrity and confidentiality of enclave
programs. For instance, when the enclave code is implemented with
memory corruption vulnerabilities, it has been shown that attackers
can leverage return-oriented programming (ROP) [29] to perform
memory hijacking to leak secrets [9, 21]. Although randomization-
based approaches [28] have been proposed to mitigate such attacks,
Biondo et al. [9] have also pointed out that SGX runtime inherently
contains memory regions whose addresses are fixed, and it is
therefore difficult to completely eradicate such threats.

Over the past decades, a large number of defense mechanisms
have been proposed to defeat memory corruption attacks, such as
Stack Canaries [13], Data Execution Prevention (DEP) [34], Address
Space Layout Randomization (ASLR) [18], Control Flow Integrity
(CFI) [6], so on and so forth. However, they all are imperfect for

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2333

https://doi.org/10.1145/3319535.3354241
https://doi.org/10.1145/3319535.3354241

various reasons such as the performance cost outweighing the
potential protection, incompatibility with legacy systems, relying
on changes in the compiler tool chain, or requiring the access
of program source-code. It is thus imperative to look for other
alternatives to secure SGX enclaves programs.

Since SGX is a brand new platform, where not as many legacy
applications need support, it provides a perfect opportunity of
using efficient memory safe system languages to develop enclave
programs instead of relying on traditional defenses such as ASLR
or CFI. Today, there are a variety of programming languages
with memory safe features including Rust, Go, Swift, JavaScript,
Java, Python, and Solidity. Enabling the use of these programming
languages for SGX program development would be an appealing
approach to terminate the memory corruptions inside enclave.

However, there are still enormous challenges when enabling
a memory safe language for enclave software development. In
particular, memory safe programming languages often contain
memory-unsafe components, such as Java’s JVM, Python’s C
libraries, Swift’s Object-C runtime, JavaScript’s garbage collection
(GC) engine, Go’s assembly code, and Rust’s unsafe features.
Second, not all components inside the enclave can be developed
with memory safe languages, such as the SGX feature specific
instructions (e.g., remote attestation) and also the performance
critical cryptography operations, as they may have to be written in
assembly languages.

Therefore, it is impractical to have every component inside SGX
enclave to be memory safe. Practical memory safety inside enclave
needs to be contained and layered. Rust-SGX, a new memory
safe SGX SDK proposed in this work, is designed based on this
observation. More specifically, we leverage Intel SGX SDK as the
foundation that provides a set of full fledged SGX development
APIs, and add a Rust layer on top of it. With Rust-SGX, enclave
programmers can develop their programs in pure Rust, and Rust-
SGX will bridge the gap between the Rust world and Intel SGX
interfaces. Compared to the enclave programs developed by Intel
SGX SDK, the enclave programs developed with Rust-SGX are
significantly more secure at the application layer thanks to the
memory-safe Rust language. Whereas at the library layer, they
have equivalent security properties due to the same dependency
on Intel SGX SDK.

Enabling Rust atop Intel SGX SDK is non-trivial. A key challenge
we must solve is to make sure the foreign function interface (FFI)
between memory-safe and memory-unsafe languages (i.e., Rust
and C/C++) is secure. Rust-SGX addresses this issue via formalized
modeling and proof of the memory safety of the FFI. At a high level,
our formalization is inspired by both CCured [25] and the safe Java
Native Interfaces (JNI) by Tan el al. [32], and we extend them to
secure the critical boundary code bridging the safe Rust world and
unsafe C/C++ world.

We have implemented Rust-SGX, and tested it with a number of
benchmark programs. Our evaluation results show that Rust-SGX
SDK only imposes imperceptible or modest overhead (less than 5%
with respect to the SGX services compared to software developed
by Intel SGX SDK). Rust-SGX has been released as an open source
project. It has been widely employed by the community to develop
memory-safe SGX enclaves since 2017. The community adoption

with Rust-SGX has indicated that programming with Rust-SGX is
productive, efficient, and reliable.
Contributions. To summarize, we make the following contribu-
tions in this paper:

• We present Rust-SGX, a practical and layered approach
to exterminating memory corruptions for SGX enclave
programs.

• We propose the use of type safety and formal proof to handle
the unsafe components when dealing with a layered memory
safety model.

• We have implemented Rust-SGX and evaluated it with a
number of benchmark programs. Our evaluation results
show that Rust-SGX fully preserves the SGX functionality
and meanwhile does not impose any significant performance
overhead.

Roadmap. The rest of this paper is organized as follows. In
§2, we provide necessary background related to Intel SGX and
Rust programming language. §3 describes the objectives, threat
model and scope, challenges and architecture of Rust-SGX. Next,
we present how we perform secure binding between Rust and
C/C++ (§4), formalize and prove the memory safety (§5), with
implementation (§6), evaluation (§7), and applications (§8) of Rust-
SGX, respectively. In §9, we discuss the limitations and future work,
followed by related work in §10. Finally, §11 concludes the paper.

2 BACKGROUND

2.1 Intel SGX

Intel SGX is designed to provide applications the capability of
executing code in a secure enclave while protecting secrets with
their own execution environment [3, 24]. With SGX, application
programmers can directly control the security of their applications
without relying on any underlying system software such as the
OS or hypervisor. Such a design significantly reduces the trusted
computing base (TCB) to the smallest possible code (i.e., only the
code executed inside the enclave is trusted), and prevents various
software attacks even when the system software is compromised.

To use SGX, the applications typically need to be implemented
with two components: a trusted component and an untrusted
component. The trusted component is executed inside the enclave,
whereas the untrusted component is executed outside. When data
needs to be passed between trusted and untrusted components, it
has to be copied from and to the enclave because enclave memory
cannot be read directly outside of the enclave. Intel provides a
mechanism to create bridge functions by using its corresponding
SGX SDK. A bridge function at the enclave entry point dispatches
calls to the corresponding functions inside the enclave. This allows
an enclave to run only certain functions specified by the developers.
These functions are called ECALLs, and they are called from the
untrusted component. There are also corresponding functions that
reside in the untrusted component called OCALLs, which are invoked
inside the enclave to request services from the outside world.

2.2 The Rust Programming Language

Rust [23] is a systems programming language, allowing developers
to have efficient implementation for systems software. It supports

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2334

both functional and imperative-procedural programming. Rust is
designed to be memory safe with zero-cost abstraction. Its unique
type system can statically guarantee the absence of uninitialized
variables, dangling pointers, race conditions, and other memory
safety bugs. Meanwhile, Rust does not rely on any automated
garbage collection to reclaim memory resources, and instead most
Rust objects have statically known lifetime and the rest aremanaged
through smart pointers. Rust does not allow null pointers, and the
data structures have to be acyclic.

An important concept in Rust to gain statically verifiablememory
safety is the memory ownership [23]. The basic rules of memory
ownership dictate that each memory object has a single owner
variable at each program point. When the owner variable goes out
of scope, the value is automatically deallocated. Other variables
can temporarily “borrow” the object from its owner, but they have
to return it before the owner reaches the end of its lifetime. An
object can be borrowed unlimited number of times when it is in an
immutable state, whereas mutable borrows are exclusive. In this
way, Rust ensures that no memory objects are both mutable and
aliased at the same time, eliminating memory errors.

However, Rust does provide a mechanism to allow programmers
to write code that bypasses its memory safety checks. This is a
necessary compromise when Rust needs to interact with other
languages or manipulate the hardware directly, since the type safety
of Rust is not applicable to code across these irregular programming
boundary. An “unsafe” keyword is introduced to mark unchecked
code for the convenience of additional security auditing.

3 OVERVIEW

3.1 Objectives, Threat model, and Scope

The key objective of Rust-SGX is to remove memory corruption
vulnerabilities inside SGX enclave by enabling the enclave software
development with memory safe languages. Not all memory safe
languages (e.g., Python) are of our interest, and instead we have
particular interest in the more efficient memory safe system
languages. That is why we focus on Rust. However, we must ensure
that our design and implementation will impose no significant
performance overhead when enabling Rust with SGX enclave
programming.

Rust-SGX shares the same threat model as does Intel SGX;
namely, only the software running inside the enclave is trusted,
and the rest (e.g., operating systems and hypervisors) is untrusted.
The particular attacks Rust-SGX aims to defeat are those memory
corruptions that exploit the insecure memory operations inside
enclave programs. We do not provide any additional mechanisms
to defeat various side channel attacks (e.g., page [36], cache [15])
against enclave programs, which is orthogonal to thememory safety
problem we aim to solve.

In this work, we only focus on enabling application layer
memory safety. The memory safety of the lower layer software
such as the core SGX libraries (e.g., the cryptographic function
implementations and SGX core service routines) are not within
our scope. Note that Rust-SGX only provides enclave developers
with the support for building memory safe SGX applications;
however, it does not enforce strict adherence to all rules of memory
safe programming. For example, application developers can still

abuse the “unsafe” feature mentioned in §2.2 to produce Rust
programs with exploitable memory bugs. To have a completely
secure development process, the enclave code should be audited
(manually or automatically with machine checks) before being
deployed. Rust programs, by their nature, are significantly easier to
audit than those written in memory unsafe languages, even with
the presence of “unsafe” code blocks. Nevertheless, how to audit
the enclave code is also not within the scope of this work.

3.2 Challenges

At a high level, there are two directions to build memory safe Rust-
SGX. The first one is to build it from scratch without relying on
anything, and the second is a layered approach in which Rust-SGX
is built atop an existing full-fledged SDK (e.g., Intel SGX SDK).

To build Rust-SGX from scratch sounds very appealing. It
unfortunately faces erroneous challenges. First, SGX enclave
programs heavily involve cryptographic computations (abstracted
as APIs), e.g., when communicating with outside enclave, the
messages needed to be encrypted or signed. It is challenging to
implement these cryptography APIs directly using Rust without
using assembly code, especially for performance reasons. In general,
cryptography algorithms get much better speedups from being
written in assembly than most other programming languages. One
notable example is the Intel’s native AES-NI hardware implementa-
tion of the cipher, which can be directly invoked by the assembly
code.

Second, now that Rust itself contains unsafe Rust and also
Rust-SGX inevitably has to include assembly code for the efficient
cryptographic API implementations, we will not be able to develop
Rust-SGX purely with Rust. On the other hand, there is already full-
fledged Intel SGX SDK available that contains not only performance
efficient implementations for cryptography APIs, but also strong
support of SGX functionality such as sealing and remote attestation.
There is no need to re-implement them in another language if we
can still achieve the same performance. Therefore, we decide to
build Rust-SGX atop Intel SGX SDK. This also leads to the second
challenge we must solve: namely how to guarantee programs
developed with Rust-SGX still has efficient performance, compared
to the enclave programs developed with traditional SGX SDKs.

Third, with the integration of Intel SGX SDK and also the original
unsafe Rust, we must provide a safety guarantee in spite of these
unsafe components. With a layered approach, a practical way is
to ensure the interfaces between layers are secure. For instance,
when providing APIs for Rust SGX programmers, we must ensure
that the foreign function interface (FFI) is secure. That is, all the
arguments and side effects of FFI function must be interposed and
verified.

Finally, there are also a number of engineering challenges
of implementing Rust-SGX, especially due to the discrepancies
between the program execution model in enclave programs and
traditional Rust programs. For instance, static data can be easily
initialized in Rust, but there is no such mechanisms in SGX enclave.
Also, unlike Rust thread, SGX thread does not have constructors
nor destructors. In addition, Rust mutex is different compared to
SGX pthread mutex, and we must properly implement Rust mutex
with SGX enclaves.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2335

Intel SGX Trusted APIs/Libs

Rust-SGX Trusted APIs/Libs

Securely Binding Between C/C++ and Rust

Enclave
Application

Rust World

C/C++ World

Trusted Runtime, Services
(libsgx_trts.a,

libsgx_tservice.a,...)
Standard Support Libs

(libsgx_tstdc.a,
libsgx_tcxx.a,...)

Enclave
Application

Trusted Runtime, Services
(sgx_trts,sgx_tservice,sgx

_tseal,...)
Standard Support Libs
(sgx_tstd,sgx_tdh,...)

Enclave
Application

Figure 1: Overview of Rust-SGX.

3.3 Architecture

An overview of Rust-SGX is presented in Figure 1. There are three
layers inside Rust-SGX: (1) the bottom layer that is the Intel SGX
SDK (which is implemented in C/C++ and also assembly), (2) the
middle layer that is the Rust and Foreign function Interfaces (FFI)
for C/C++, and (3) the top layer that is the Rust SGX SDK. Rust-SGX
provides memory safety by using Rust’s memory safe properties,
and meanwhile ensuring the interface of interacting with the lower
Intel SGX SDK is memory safe.

Note that we cannot prove nor verify the memory safety of Intel
SGX SDK due to its large code base and heavy use of C/C++, but
if we can ensure the interaction between Rust world and C/C++
world is secure and prove the Rust world can not be escaped, then
we can still ensure the memory safety of the Rust world. This
is similar to the issues in which type safe language such as Java
interacts with the Java native interface (JNI). However, there are still
substantial differences, e.g., Rust and Java are totally independent
from language aspect, and meanwhile SGX SDK itself has a variety
of data types. We must build a proper mapping between the Rust
world and SGX world. The details of how we achieve this mapping
is presented in the next section.

4 SECURE BINDING BETWEEN RUST AND

C/C++

As our layered design of Rust-SGX consists of code written in both
C/C++ and Rust, it naturally raises the question of how we can
securely bind the two worlds together. Since the memory safety of
C/C++ and Rust relies on different security invariants, an arbitrary
combination of the two worlds cannot be guaranteed to be memory
safe. Therefore, we must add additional enforcement of how the
two worlds interact with each other to assure that the two different
language constructs are securely bound.

Note that previous research has investigated how to achieve
memory safety in the context of the manner in which a safe
language interacts with an unsafe one. In particular, Tan et al. [32]

developed a scheme to safely call C functions inside a Java runtime
environment via Java Native Interfaces (JNI). We face a similar
situation in the design of Rust-SGX. Although the safety of Java
and Rust is enforced via different mechanisms, the details are
independent of the approach of Tan et al. Therefore, we have to
modify and extend their techniques to securely binding the Rust
language with the underlying Intel SGX SDK through carefully
designed foreign function interfaces (FFI).

The core idea is to regulate the behavior of unsafe C/C++ code
via a safe memory management scheme and an advanced type
system (with certain run-time checks) that supports safe pointer
operations. In general, such a memory management scheme and
type system can restrict the expressiveness of the unsafe language
and affect programmer’s productivity. For Rust-SGX, however, this
is much less of a concern, since we only need to safely wrap a fixed
set of C/C++ APIs that are guaranteed to be stable by Intel. After a
thorough review of Intel SGX SDK, we found that the semantics of
the C/C++ APIs are very suitable to the aforementioned safety regu-
lation. In the rest of this section, we show that it is feasible to design
a memory safe interpolation scheme between the Rust language
and Intel SGX SDK, with the safety properties formally proved.

It is worth mentioning that our purpose is not to provide a
general memory safe Rust foreign function interface to C/C++, but
to securely connect Rust with the C/C++ interface of Intel SGX SDK.
Therefore, we are allowed to exclude a considerable proportion of
C/C++ semantics from our consideration. Many problems that are
difficult to address for a general solution can be solved through
enumeration and a reasonable amount of manual checks, since the
Intel SGX SDK only provides a finite set of C/C++ data structures
and APIs that are not extensible by enclave developers.

4.1 Safe Memory Management

By manually auditing the semantics of all Intel SGX APIs, which
are clearly documented by an Intel-provided manual, we found that
these C/C++ functions are able to ensure high-degree of segregation
between the heaps managed by the Rust world and the C/C++world.
In particular, the C/C++ APIs never free, or hold references to, the
memory objects managed by callers. Therefore, calling Intel APIs
preserves the safety invariant of the Rust heap without the need
of additional regulation.

However, the Intel APIs do expose some objects allocated
on their private heap to the outside Rust world. One example
is sgx_sha256_init. This C/C++ API returns an allocated and
initialized SHA context state, which can later be reclaimed by the
Intel SDK through a pairing API, i.e., sgx_sha256_close. This
opens a loophole that allows the Rust code to corrupt the C/C++
heap, which thus must be mitigated in the design of Rust-SGX.

There are two potential problemswhen accessing C/C++ heap via
Rust code if the binding is inappropriately designed. The first is that
the Rust code may be able to manipulate the internal states of these
objects which are supposed to be hidden. We demonstrate that this
concern can be resolved by introducing type safety enforcement,
which will be explained in §4.2. The second problem is directly
related to thememorymanagement, i.e., the Rust codemay continue
to operate on a C/C++ heap object after it has been freed, leading
to memory errors such as use after free or double free. To deal

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2336

1 extern {

2 // Raw Intel SGX SDK APIs

3 fn sgx_sha256_init (...);

4 fn sgx_sha256_close (...);

5 }

6
7 pub struct SgxSha256 { handle: sgx_sha256_handle_t , ...

}

8
9 impl SgxSha256 {

10 ...

11 // Initialization , call Intel SGX API to allocate and

12 // object on the C/C++ heap and get a handle of it

13 pub fn new() -> Self {

14 ...

15 unsafe { sgx_sha256_init (&mut handle , ...); }

16 ...

17 }

18 }

19
20 impl Drop for SgxSha256 {

21 // When the object exits its scope , 'drop ' is

automatically

22 // called to free the object via the pairing Intel

SGX API

23 pub fn drop(&mut self) {

24 ...

25 unsafe { sgx_sha256_close (&mut self.handle); }

26 ...

27 }

28 }

Figure 2: RAII-style C/C++ heap management in Rust

with these errors, we implement high-level wrappers for all C/C++
SGX data structures allocated on the heap. These wrappers provide
the resource-acquisition-is-initialization (RAII) style of memory
management. In this way, the task of releasing C/C++ heap objects is
completely delegated to the lifetime semantics of the Rust language.
The security and safety of the C/C++ heap is therefore guaranteed
by the soundness of Rust’s memory management scheme. Figure 2
displays an example of the conceptual design of RAII memory
management in Rust. Users of type SgxSha256 are only allowed to
construct its object through the static new function.When the object
reaches the end of its lifespan, the drop method is automatically
called to securely release the internal reference to data on the C/C++
heap.

Note that we did not invent any automated tools to extract
formalized semantics of the C/C++APIs from the Intel reference. All
inspections and reasoning are manually performed by experienced
security researchers and professionals. Since there is only a finite
number of Intel SGX APIs and they are reasonably stable, this
manual effort is manageable and mostly a one-time cost.

4.2 Safe Memory Access of C/C++ Objects

The most important security property to enforce in our design of
Rust-SGX is type safety. This problem is rooted in the mismatch
between Rust and C/C++ types. For primitive types shared by
both languages, there are well defined conversion semantics.
For example, the Rust std::libc crate1 provides the definitions
1A Rust crate is similar to a library in other languages.

of platform-dependent C/C++ numerical types, along with the
routines to safely cast them from and to the corresponding Rust
types. However, for complex types defined by the Intel SGX SDK,
there are no built-in Rust representations for them. A naive solution
is to refer to all complex C/C++ types with * c_void in Rust.
Apparently, this abstraction is unsound and can easily cause type
confusion errors.

To prevent conversions among incompatible C/C++ types in
Rust, we introduce a handle type in Rust. For any C/C++ type τ ,
we define a corresponding Rust type Handleτ , which is essentially
a pointer referring to a memory chunk which can be interpreted
as a legal object of type τ in the C/C++ world. In the Rust world,
Handleτ can be used for testing equality and be used as function
arguments. It also carries an init flag to indicate if the handle has
been initialized. No other pointer operations are supported.

For any C/C++ defined type τ with SGX-specific semantics, there
are only twoways to obtain Handleτ objects in Rust. One is through
the initialization from a null pointer. The other is to call the Intel
SGX SDK API that initializes a Rust-allocated memory chunk as a
τ object. In this way, we achieve type safety for memory accessed
by both Rust and C/C++.

4.3 Safe Memory Access of Raw-Byte

Many Intel SGX APIs need to read or write to memory in a “type-
less” manner. In other words, these APIs treat memory chunks as
raw bytes, ignoring any semantics the memory chunk may carry.
These APIs are mostly for cryptography tasks, which convert in-
memory data structures to type-less byte arrays. Type-less memory
is often with variable-length and its access could be out of bound.

To address this problem, we again referred to the Intel SGX SDK
manual and found that Intel APIs always perform bounded type-
less memory access by requiring callers to specify the length of the
memory through additional parameters. Figure 3 shows such an
API. In particular, sgx_seal_data is the function that encrypts a
piece of type-less data with AES-GCM, using a key derived from
secrets unique to the CPU chip. The function takes six parameters
that can be divided into three pairs, each of which contains an
unsigned integer (the *_length parameters) and a byte pointer (the
ptr_* parameters). To safely use this API, the caller should ensure
that, for each parameter pair, the integer value correctly bounds
the length of the memory referred to by the pointer parameter.
Abstractly, each of these parameter pair can be viewed as a fat
pointer carrying bound information, which can be formalized by
the SEQ (sequence) pointer defined by CCured [25]. We use the
Bytes notation in Rust-SGX. Different from SEQ in CCured, Bytes
is not a generic type constructor but a concrete type that only
models arrays of bytes.

To regulate the usage of Bytes pointers, we define a trait
ContiguousMemory to mark data structures with a contiguous
memory layout. Types with this trait are allowed to derive a
Bytes pointer, providing a type-less view of the object. Whoever
implements ContiguousMemory is responsible for the safety of the
conversion. Wemake ContiguousMemory an unsafe trait to prevent
enclave developers of Rust-SGX from abusing Bytes pointers. Note
that the unsafe keyword here is purely syntactical and does not
necessarily indicate any actual lack of safety. Indeed, there is no

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2337

1 sgx_status_t sgx_seal_data(

2 // For read -only type -less memory access

3 const uint32_t additional_MACtext_length ,

4 const uint8_t * ptr_additional_MACtext ,

5 // For read -only type -less memory access

6 const uint32_t text2encrypt_length ,

7 const uint8_t * ptr_text2encrypt ,

8 // For writable type -less memory access

9 const uint32_t sealed_data_size ,

10 sgx_sealed_data_t * ptr_sealed_data

11);

Figure 3: Intel SGX API with Bounds Checks for Type-less

Memory Access.

Table 1: Types Used by our Rust and C/C++ Interpolation.

Notation Supported Operations

Bytes
pointer arithmetic; pass to C APIs;
copy content to non-overlapping
Bytes-described memory location

ContiguousMemory convert to Bytes

Sanitizable[T] construct T from Bytes

Handleτ equality test; validity test

guarantee that enclave developers will securely implement this
trait, but the unsafe marking makes the code easy to audit by
security professionals. Similarly, we define an unsafe generic trait
Sanitizable[T], which provides a static function from_bytes
that can safely construct a T object from a Bytes pointer. The
implementation of Sanitizable[T] is obligated for sanitizing the
raw byte array and ensuring that the memory represents a valid
object of type T. A summary of the types used by Rust-SGX for
securely wrapping of Intel SGX APIs inside the Rust language is
presented in Table 1.

5 FORMALIZATION AND PROOF

In this section, we present a formal proof of the memory safety of
our Intel SGX SDK binding in Rust-SGX, using a formal language
LR to model the subset of Rust that is relevant to our secure Intel
SGX SDK binding scheme. Part of our formalization resembles the
systems in CCured [25] and the work on safe Java Native Interfaces
(JNI) by Tan el al. [32].

There has been a considerable amount of work trying to formally
model and verify certain security properties of Rust programs or the
language itself. To clarify the scope of our work, we emphasize that
the to-be-presented formalization and proof aim to demonstrate the
memory safety of the design of our foreign language binding. We do
not intend to verify the security properties of our implementation
or any “unsafe” Rust code inherited from the official Rust standard
library code. The fulfillment of these objectives requires more
powerful theories and significantly more human labor, which is out
of the scope of this work.

C Types δ ::= ctype1 | ctype2 | · · · | ctypeM

Intel SGX APIs F ::= f1 | f2 | · · · | fN

Type Constructors T ::= Sanitizable | Ref

LR Types τ ::= Bool | Int | SgxStatus
| ContiguousMemory
| Bytes | Handleδ
| T [τ]
| (τ1, · · · ,τk) → τk+1

Values v ::= n | null | true | false

| sgx_success | sgx_error
| F
| ref (naddr) | handle(naddr)
| bytes(naddr,nstart,nend)
| failsafe

Expressions e ::= x | n
| e1 + e2
| !e | e1 = e2
| &e
| if_init e

Statements s ::= e
| let x := s
| x := s
| alloc_bytes e
| to_bytes e
| from_bytes[τ] e
| F (e1, · · · , ek)
| if e then s1 else s2
| while e do s
| s1; s2

Figure 4: Language Syntax of LR .

Figure 4 shows the syntax of our LR . For simplicity, LR has
no general function declarations and definitions. Instead, we treat
functions important to our memory safety property as built-in
statements. For example, the statement “alloc_bytes n” means
allocating a byte array of length n. In real Rust programming, the
statement is concretized as creating a variable of type [u8;n].
Common control flows like branch and loop are supported. Scoping
is not modeled in LR , since we assume that all temporal safety
properties are enforced by the Rust compiler.

There are also several special values defined in the language. In
particular:

• Intel SGX APIs are modeled as callable built-in values,
denoted by f1, · · · , fM , whereM is the total number of APIs
used by Rust-SGX.

• sgx_success and sgx_error are to indicate whether a call to
the corresponding Intel SGX API is successful or not.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2338

• ref (naddr) is the pointer type exclusively used by the parame-
ters of Intel SGX APIs. Rust indeed supports reference types,
but they are irrelevant in this formalization.

• handle(naddr) denotes values of some Handleδ type. Such
a value has a single field: naddr is the memory address of
the underlying δ object. A hidden binit field can be added to
indicate whether the δ object has been correctly initialized.

• bytes(naddr,nstart,nend) denotes a chunk of raw-byte mem-
ory with bound information.

• A singleton failsafe value used to indicate raising a run-time
error. We introduce this value to simplify the semantics of
the language. It may be implemented as an exception or it
can simply indicate the termination of the program.

It is worth noting that the syntax of LR contains notations of
C/C++ types used to mark the corresponding handle types in LR .
There are no semantics bound to these C/C++ type notations and the
language does not allow explicit instantiation of the C/C++ objects.
For convenience, we use TC to denote the universe of C/C++ types
appeared in Intel SGX APIs. The universe of valid LR types is
denoted by TR . A valid LR type is always predicative.

Also, when enclave developers need to handle their own Rust
types, they have to implement to_bytes and from_bytes in LR .
However, in such cases, another security concern arises which is the
correctness of data serialization and de-serialization. This problem
is difficult to handle at a language level, since enclave developers
are allowed to define arbitrarily complicated data structures and
some of them may not be serializable by nature. To tackle this
problem, we have ported the serde Rust library2 into SGX. Note
that serde is a toolkit for secure and automated data serialization
and deserialization in Rust. It is not a part of Rust-SGX, but enclave
developers are encouraged to use it if they need to pass custom
data structures to the APIs provided by Intel SGX SDK.

5.1 Type System

Figure 5 defines the typing rules of LR . Some statements are
considered to bear no type information, although there are still
type constraints on their substatements. We use Void as the type
of these statements when they are well formed. A phantom value
of Void is () which indicates the end of computation.

We use ⊔ and ⊓ to denote type union and intersection, respec-
tively. Formally, the two operators are defined as follows:

Γ ⊢ e : τ1 ⊔ τ2 ⇐⇒ Γ ⊢ e : τ1 ∨ Γ ⊢ e : τ2
Γ ⊢ e : τ1 ⊓ τ2 ⇐⇒ Γ ⊢ e : τ1 ∧ Γ ⊢ e : τ2

Some of the expression typing rules need more explanation. As
indicated by rule HandelNull, the null pointer can be viewed as
any handle type. In this way, every handle object can be initialized
as null. As aforementioned, the failsafe value is considered to be an
object of the bottom type in the type lattice and thus can be viewed
as an object of any valid LR type.

SgxAPI is not a typical type inference rule but a meta constraint
we impose on the type of Intel SGXAPIs. A native SGXAPI can only
take Bytes, Int, and reference to Handleδ as parameters. Its return
value must be an SgxStatus to notify the caller if the invocation
fails. Although LR has reference types, only Handle types can be

2https://serde.rs/

taken reference. Moreover, no dereference operations are allowed
in LR . The only way to modify memory through references are
calling Intel SGX APIs with reference values as parameters. This is
critical to the type safety of C/C++ memory.

5.2 Operational Semantics

Before defining the semantics of LR , we need some mathematical
constructs to describe program state:

• X is the universe of all variables in a program.
• A program variable store Σ : X → N that maps variables to
their memory locations.

• V is the universe of all possible values in a program.
• A memory configuration M : N → V is a mapping from
natural numbers to values. Note that M does not model the
private memory of Intel SGX SDK.

Throughout program execution, the invariant rng(Σ) ⊆ dom(M)

holds, since every variable should be allocated in a chunk of
memory.

We express the operational semantics in the forms of two
judgments:

• expression evaluation: Σ,M ⊢ e ⇓ v
• statement evaluation: Σ,M ⊢ s ⇓ s ′, Σ′,M ′

As indicated by the notations, evaluating an expression does not
have side effects, while the computation of statements may modify
the program state.

5.3 Type Safety

We now define the formal memory safety guarantee that LR
satisfies. Intuitively, the language LR being memory safe means
that the type environment Γ always honestly describes the program
memory state, which is abstracted by the pair of (Σ,M).

We introduce the type store concept to help reason the consis-
tency between Γ and (Σ,M). A memory type store Π : N → T

maps memory locations to types, where T = TR ∪ TC ∪ {byte}.
byte is the meta type describing type-less memory. It should not
be confused with Bytes which is a valid LR type serving as the
meta data of an allocated chunk of type-less memory.

We then define for each type τ a set of valid values Jτ KΠ . Since
LR has pointer types, the set of valid values of τ depends on
Π, as shown in Figure 6. Note that we do not define JδKΠ when
δ ∈ TC , because it is agnostic to LR . The fundamental reason is
that the implementation of Intel SGX SDK is transparent to Rust-
SGX. Nevertheless, by assuming that Intel SGX SDK is securely
implemented, we do not require this information to formalize or
prove our type safety.

We can now formally define the type safety for program states.

Definition 5.1 (Type-safe program state). The notation

Σ,M |=Π Γ

indicates that the program state (Σ,M) is safe in type environment
Γ, with respect to the type store Π:

Σ,M |=Π Γ
def
=== dom(M) = dom(Π)

∧ ∀x ∈ dom(Σ).Γ(x) = Π(Σ(x))
∧ ∀n ∈ dom(M).M(n) ∈ JΠ(n)KΠ

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2339

https://serde.rs/

Values:
Int

⊢ n : Int True
⊢ true : Bool

False
⊢ false : Bool

SgxSuccess
⊢ sgx_success : SgxStatus SgxError

⊢ sgx_error : SgxStatus

HandleNull
⊢ null ≡ handle(0) :

d
δ ∈TC Handleδ

HandleNonNull
n , 0

⊢ handle(n) :
⊔
δ ∈TC Handleδ

Bytes
⊢ bytes(naddr,nstart,nend) : Bytes

Failsafe
⊢ failsafe :

d
TR

SgxAPI
fi : (τ1, · · · ,τk) → τk+1

τk+1 = SgxStatus ∧ ∀i ∈ {1, · · · ,k}.τi = Bytes ∨ τi = Int ∨ τi ∈ {Ref[Handleδ] : τ ∈ TC }

Expressions:

IntAdd
Γ ⊢ e1 : Int Γ ⊢ e2 : Int

Γ ⊢ e1 + e2 : Int
BytesArith

Γ ⊢ e1 : Bytes Γ ⊢ e2 : Int
Γ ⊢ e1 + e2 : Bytes

Neg
Γ ⊢ e : Bool
Γ ⊢!e : Bool

Eq
τ ∈ {Int, Bytes} ∪ {Handleδ : δ ∈ TC } Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ e1 = e2 : Bool

Ref
Γ ⊢ x : Handleδ

Γ ⊢ &x : Ref[Handleδ]
TestHandleInit

Γ ⊢ e : Handleδ
Γ ⊢ if_init e : Bool

Statements:
DeclarVar

Γ ⊢ x : τ Γ ⊢ s : τ
Γ ⊢ let x := s : Void

SetVar
Γ ⊢ x : τ Γ ⊢ s : τ
Γ ⊢ x := s : Void

CallSgxAPI
fi : (τ1, · · · ,τk) → τk+1 Γ ⊢ e1 : τ1 · · · Γ ⊢ ek : τk

Γ ⊢ fi (e1, · · · , ek) : SgxStatus

AllocBytes
Γ ⊢ e : Int

Γ ⊢ alloc_bytes e : Bytes

ToBytes
Γ ⊢ e : τ τ ⪯ ContinugousMemory

Γ ⊢ to_bytes e : Bytes
FromBytes

Γ ⊢ e : Bytes τ ⪯ Sanitizable[τ]

Γ ⊢ from_bytes[τ] e : τ

Seq
Γ ⊢ s1 : τ1 Γ ⊢ s2 : τ2

Γ ⊢ s1; s2 : τ2
Branch

Γ ⊢ e : Bool Γ ⊢ s1 : τ1 Γ ⊢ s2 : τ2
Γ ⊢ if e then s1 else s2 : Void

Loop
Γ ⊢ e : Bool Γ ⊢ s : τ

Γ ⊢ while e do s : Void

Notations:
TR : Universe of valid LR types TC : Universe of C types ⪯: Subtype relation ⊔: Type union ⊓: Type intersection

Figure 5: Typing Rules of LR .

For a program to be type safe, its program state should be type
safe at every program point. Thus, the whole-program type safety
can be established via the following two theorems.

Theorem 5.2 (Type safety for program expressions). Given
an initial program state (Σ,M), and its type environment Γ, if

Γ ⊢ e : τ
and there exists a type store Π such that

Σ,M |=Π Γ

then one of the following cases is true:

(1) Σ,M ⊢ e ⇓ failsafe

(2) ∃v .Σ,M ⊢ e ⇓ v and v ∈ Jτ KΠ
Theorem 5.3 (Type safety for program statements). Given

an initial program state (Σ,M), and its type environment Γ, if

Γ ⊢ s : τ
and there exists a type store Π such that

Σ,M |=Π Γ

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2340

JbyteKΠ = {08-bit, · · · , 2558-bit}
JBoolKΠ = {true, false}

JIntKΠ = N
JSgxStatusKΠ = {sgx_success, sgx_error}
JHandleδ KΠ = {handle(n) : n ∈ dom(Π) ∧ Π(n) = δ ∈ TC }

JBytesKΠ = {bytes(n,b, e) : b ≤ n < e ∧
[b, e) ⊆ dom(Π) ∧
∀i ∈ [b, e).Π(i) = byte}

JRef[τ]KΠ = {ref (n) : n ∈ dom(Π) ∧ Π(n) = τ }

Figure 6: Valid values of each type within type store Π

then one of the following cases is true:

(1) Σ,M ⊢ s ⇓ failsafe, ∗, ∗

(2) ∃v, Σ′,M ′,Π′.

Π ⊆ Π′ ∧ Σ,M ⊢ s ⇓ v, Σ,M ′ ∧ (v = () ∨ v ∈ Jτ KΠ′) ∧

Σ′,M ′ |=Π′ Γ

For the simplicity of notations, we define two invariant judg-
ments

∀τ ∈ TR .∀v ∈ Jτ KΠ .Σ,M ⊢ v ⇓ v

in the context of expression evaluation. Similarly, we have
∀τ ∈ TR .∀v ∈ Jτ KΠ ∪ {()}.Σ,M ⊢ v ⇓ v, Σ,M

when considering statement evaluation.
The two theorems indicate the progress and preservation prop-

erties of our type system. That is, a well-typed program never gets
stuck during computation, and the computation preserves the types.
Proofs of these two theorems are through induction on the structure
of expressions and statements in LR . Note that the formalization
of Theorem 5.3 assumes all computation will terminate. Although
this in general is not true since LR supports the while loop, the
formalization can be easily extended to include the non-terminating
situation.

5.4 Operational Semantics of LR

Figure 7 displays part of the operational semantics of LR . For con-
ventional program semantics like integer and boolean operations,
their formalization is mostly trivial and thus omitted in the paper.
Also, the formalization in Figure 7 mixed notations of syntactical
elements and symbols with operational effects. This is for simplicity
and clarity of understanding.

As stated in the main text, some safety properties of our type
system are dynamically checked; these are marked with blue frames
in Figure 7. if any of these checks fail, the evaluation generates
the failsafe value. We do not consider failsafe as a blocker of the
computation. Also, Figure 7 does not include some of the failsafe-
related semantic rules. The basic principle is that, if any of the sub-
expressions or sub-statements is evaluated to failsafe, the entire
expression or statement will be evaluated to failsafe. In other words,
the imaginary value failseafe propagates to the next step of the
computation indefinitely

To ensure type safety, the statements to_bytes and from_bytes

always allocate new memory for the results instead of modifying
the input object content in place. In the implementation, this can
sometimes can be optimized for better performance.

The semantics of calling Intel SGX APIs is more complicated
than others. As previously mentioned, an Intel SGX API only takes
three types of parameters, i.e., integers, type-less arrays with bound
checks, and handles to objects of private C types. We assume the
implementation of Intel SGX APIs preserves type safety. Part of
this assumption is formalized as predicates in red frames.

We do not list the semantics of if_init e expressions in Figure 7
because the implementation of this primitive is dependent on the
type of the handle. In general, this primitive can be implemented by
bundling each handle instance with a companion variable indicating
whether the data structure has been properly initialized by a
particular Intel SGX SDK API. Nevertheless, the initialization tests
for handle objects are mostly irrelevant to memory safety. Instead,
it is included by LR to ensure certain temporal safety of stateful
data structure operations.

5.5 Soundness Proof Sketch

5.5.1 Type Safety for Expressions. We prove Theorem 5.2 by
inducting on the structure of e . In this proof sketch, we only prove
the e = e1 + e2 case to demonstrate the idea. The other cases are
either trivial or can be similarly proved, thus omitted.

Lemma 5.4 (Type safety for the plus expression). Given an

initial program state (Σ,M), and its type environment Γ, if there
exists a type store Π such that

Γ ⊢ e1 + e2 : τ ∧ Σ,M |=Π Γ

then one of the following cases is true,

(1) Σ,M ⊢ e1 + e2 ⇓ failsafe

(2) ∃v .Σ,M ⊢ e1 + e2 ⇓ v and v ∈ Jτ KΠ

Proof. Assume there exists a type store Π such that Σ,M |=Π Γ.
Given e1 + e2, either typing rule IntAdd or typing rule Byte-

sArith applies. The proof is thus split into two cases.
In case that typing rule IntAdd applies, we have Γ ⊢ e1 : Int.

Since Σ,M |=Π Γ, by assumption it is true that for e1, one of the
following cases is true,

(1) Σ,M ⊢ e1 ⇓ failsafe

(2) ∃v .Σ,M ⊢ e ⇓ v ∈ JIntKΠ
A similar conclusion holds for e2 as well. If

Σ,M ⊢ e1 ⇓ failsafe ∨ Σ,M ⊢ e2 ⇓ failsafe

then we have
Σ,M ⊢ e1 + e2 ⇓ failsafe

which is the first case of our proof obligation.
If both e1 and e2 can be successfully evaluated, then for some

n1,n2 ∈ JIntKΠ such that Σ,M ⊢ e1 ⇓ n1 and Σ,M ⊢ e2 ⇓ n2. At
this point, the semantics rule IntAdd applies. Therefore, Σ,M ⊢

e1 + e2 ⇓ n1 + n2 where n1 + n2 is the result of adding integers n1
and n2. By definition, n1 + n2 ∈ JIntKΠ

In case that typing rule BytesPtrArith applies, we have

Γ ⊢ e1 : Bytes ∧ Γ ⊢ e2 : Int

By assumption, e1 and e2 are type safe. Similar to the first case, if
either e1 or e2 is evaluated to fialsafe, then e1 + e2 will be evaluated

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2341

Expressions:

Var
Σ(x) = n M(n) = v

Σ,M ⊢ x ⇓ v
Ref

Σ(x) = n

Σ,M ⊢ &x ⇓ ref (n)

IntAdd
Σ,M ⊢ e1 ⇓ n1 Σ,M ⊢ e2 ⇓ n2

Σ,M ⊢ e1 + e2 ⇓ n1 + n2

BytesPtrArith
Σ,M ⊢ e1 ⇓ bytes(n1,b, e) Σ,M ⊢ e2 ⇓ n2 b ≤ n1 + n2 < e

Σ,M ⊢ e1 + e2 ⇓ bytes(n1 + n2,b, e)

Statements:

SetVar
Σ(x) = n Σ,M ⊢ s ⇓ v, Σ′,M ′

Σ,M ⊢ x := s ⇓ (), Σ′,M ′[n 7→ v]
Seq

Σ,M ⊢ s1 ⇓ ∗, Σ′,M ′

Σ,M ⊢ s1; s2 ⇓ s2, Σ′,M ′

IfTrue
Σ,M ⊢ e ⇓ true

Σ,M ⊢ if e then s1 else s2 ⇓ s1, Σ,M
IfFalse

Σ,M ⊢ e ⇓ false

Σ,M ⊢ if e then s1 else s2 ⇓ s2, Σ,M

WhileTrue
Σ,M ⊢ e ⇓ true

Σ,M ⊢ while e do s ⇓ s;while e do s, Σ,M
WhileFalse

Σ,M ⊢ e ⇓ false

Σ,M ⊢ while e do s ⇓ (), Σ,M

AllocBytes

Σ,M ⊢ e ⇓ nlength nlength > 0 ∃nstart.[nstart,nstart + nlength) ∩ dom(M) = �

Σ,M ⊢ alloc_bytes e ⇓ bytes(nstart,nstart,nstart + nlength − 1), Σ,M[nstart 7→ 08−bit, · · · ,nstart + nlength − 1 7→ 08−bit]

ToBytes
Σ,M ⊢ e ⇓ v nlength = sizeof(v) Σ,M ⊢ alloc_bytes nlength ⇓ bytes(nstart,nstart,nstart + nlength), Σ,M

′

Σ,M ⊢ to_bytes e ⇓ bytes(nstart,nstart,nstart + nlength), Σ,M[nstart, · · · ,nstart + nlength − 1 7→ LvM[byte;sizeof(v)]]

FromBytes

Σ,M ⊢ e ⇓ bytes(nstart,nbegin,nend)
LM[nstart],M(nstart + 1), · · · ,M(nend − 1)Mτ ∈ Jτ KΠ

Σ,M ⊢ alloc_bytes (nend − nstart) ⇓ bytes(n′
start
,n′

start
,n′

end
), Σ,M ′

Σ,M ⊢ from_bytes[τ] e ⇓ Σ,M[n′start 7→ LM(nstart), · · · ,M(nend − 1)Mτ]

CallSgxAPI

Eint = {eInt1 , · · · , e
Int
h } Eref-handle = {eRef1 , · · · , e

Ref
i } Ebytes = {eBytes1 , · · · , eBytesj }

h + i + j = k
Eint ∪ Eref-handle ∪ Ebytes = {e1, · · · , ek }

Σ,M ⊢ eInt1 ⇓ n1 · · · Σ,M ⊢ eInth ⇓ nh
Σ,M ⊢ eRef1 ⇓ ref (m1) · · · Σ,M ⊢ eRefi ⇓ ref (mi)

Σ,M ⊢ eBytes1 ⇓ bytes(a1,b1, c1) · · · Σ,M ⊢ eBytesj ⇓ bytes(aj ,bj , c j)

Any two of bytes(a1,b1, c1), · · · , bytes(aj ,bj , c j) do not overlap

There exists some M ′ s.t. dom(M) ⊆ dom(M ′)

M and M ′ only differ at {m1, · · · ,mi } ∪ {n : M ′(n) is a C value} ∪ {n : ∃t .n ∈ [bt , ct)}

Σ,M ⊢ fx (e1, · · · , ek) ⇓ sgx_{success, error}, Σ,M ′

Propositions with blue frames are dynamically checked. A failsafe value is generated when these checks fail.

Propositions with red frames are assumptions about Intel SGX API semantics.

The notation LvM[byte;n] means interpreting the value v in memory as a sequence of type-less bytes of length n.

The notation Lb1,b2, · · · ,bnMτ means interpreting the byte sequence b1,b2, · · · ,bn in memory as a value of type τ .

Figure 7: Operational semantics.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2342

to failsafe. It is now sufficient to prove that if there exists v ∈

JBytesKΠ andm ∈ JIntKΠ such that

Σ,M ⊢ e1 ⇓ v ∧ Σ,M ⊢ e2 ⇓m

Letv1 = bytes(n,b, e) ∈ JBytesKΠ . At this point, the dynamic check
b ≤ n +m < e will be commenced. If the check fails, e1 + e2 is
evaluated to failsafe. Otherwise, the semantics rule BytesPtrArith
applies. Per this rule,

Σ,M ⊢ e1 + e2 ⇓ bytes(n +m,b, e)

It is easy to verify that bytes(n +m,b, e) ∈ JBytesKΠ . □

5.5.2 Type Safety for Statements. Similar to Theorem 5.2, Theo-
rem 5.3, is also proved by inducting on the structure of statements
s . Since all expressions are statements free of side effects, an
immediate corollary of Theorem 5.2 is that,

Corollary 5.5. Given an initial program state (Σ,M), and its

type environment Γ, if there exists a type store Π such that

Γ ⊢ e : τ ∧ Σ,M |=Π Γ

then one of the following cases is true,

(1) ∃Σ′,M ′.Σ,M ⊢ e ⇓ failsafe, Σ,M
(2) ∃v .Σ,M ⊢ e ⇓ v, Σ,M ∧v ∈ Jτ KΠ ∧ Σ,M |=Π Γ

For non-expression statements, there are three different cases:
• Statements assumed to be type safe. The only instance of
this kind is the Intel SGX API invocation statement.

• Compound statements that are evaluated to smaller state-
ments, without considering the potentially non-terminating
while loop.

• Simple statements that can be immediately evaluated to a
value.

For the second kind of statements, since the structure of
statements is well founded, recursively proving the type safety
of sub-statements eventually leads to the proof for the whole
statement. In other words, in order to prove Theorem 5.3, it is
sufficient to prove the following lemma

Lemma 5.6 (Recursive type safety for program statements).
Given an initial program state (Σ,M), and its type environment Γ, if

Γ ⊢ s : τ

and there exists a type store Π such that

Σ,M |=Π Γ

then one of the following cases is true,

(1) Σ,M ⊢ s ⇓ failsafe, ∗, ∗

(2) ∃v, Σ′,M ′,Π′.

Π ⊆ Π′ ∧ Σ,M ⊢ s ⇓ v, Σ,M ′ ∧ (v = () ∨ v ∈ Jτ KΠ′) ∧

Σ′,M ′ |=Π′ Γ
(3) There exists s ′ which is a sub-statement of s such that

Γ ⊢ s ′ : τ ′ ∧ Σ,M |= s ⇓ s ′, Σ′,M ′

and there eixsts Π′
such that

Π ⊆ Π′ ∧ Σ′,M ′ |=Π′ Γ

For the third kind of statements, we pick the case of alloc_bytes
statements as a demonstration of the general strategy of proving
statement type safety. According to the typing rule AllocBytes,
the type of alloc_bytes statements has to be Bytes.

Lemma 5.7 (Type safety for the bytes allocation state-
ment). Given an initial program state (Σ,M), and its type environ-

ment Γ, if there exists a type store Π such that

Γ ⊢ alloc_bytes e : Bytes ∧ Σ,M |=Π Γ

then one of the following cases is true,

(1) Σ,M ⊢ alloc_bytes e ⇓ failsafe

(2) ∃v, Σ′,M ′,Π′.

Π ⊆ Π′ ∧ Σ′,M ′ ⊢ alloc_bytes e ⇓ v ∧v ∈ JBytesKΠ

Proof. Per typing rule AllocBytes, Γ ⊢ e : Int. Since Σ,M |=Π
Γ, by the induction assumption, either Σ,M |= e ⇓ failsafe or
Σ,M |= e ⇓ n ∈ JIntKΠ . If e derives failsafe, due to failsafe

propagation, Σ,M ⊢ alloc_bytes e ⇓ failsafe, Σ′,M ′.
If otherwise Σ,M ⊢ e ⇓ n ∈ JIntKΠ , then the system

dynamically checks if n is positive. If not, the evaluation again
leads to a safe failure. Next, the heap allocator finds a free space in
the memory M that is large enough to hold n contiguous bytes. If
the heap is full, the evaluation also fails safely. After all dynamic
checks succeed, the semantics rule AllocBytes applies.

Σ,M ⊢ alloc_bytes e ⇓ bytes(nstart,nstart,nstart + n), Σ,M
′

where nstart is the starting address of the newly allocated type-less
memory bytes and

M ′ =M[nstart 7→ 08−bit, · · · ,nstart + n − 1 7→ 08−bit]
Since 08−bit is a valid byte value with respect to any type store,
bytes(nstart,nstart,nstart + n) ∈ JBytesKΠ .

Let Π′ = Π[nstart 7→ byte, · · · ,nstart + n − 1 7→ byte]. By
assumptions on the correctness of heap memory allocation,

[nstart,nstart + n) ∩ dom(M) = �

Therefore, Π ⊂ Π′ and
bytes(nstart,nstart,nstart + n) ∈ JBytesKΠ′

By the definitions ofM ′ and Π′, dom(Π′) = dom(M ′).We now
divide the domain ofM ′ into two disjoint parts, i.e., dom(M ′) =

dom(M) ∪ [nstart,nstart + n). For the first part, we already know
Σ,M |=Π Γ

Since Π ⊂ Π′, the following is true
Σ,M ′

��
dom(M)

|=Π′ Γ

For the second part, again by the definitions of M ′ and Π′, we
have
rng(M ′

��
[nstart,nstart+n)

) = {08−bit}∧rng(Π′
��
[nstart,nstart+n)

) = {byte}

Thus,
Σ,M ′

��
[nstart,nstart+n)

|=Π′ Γ

By unifying the type safety of the two disjoint parts of memory
layout M ′, we prove that

Σ,M ′ |=Π′ Γ

□

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2343

Table 2: Summary of LOC in Current Rust-SGX Implemen-

tation.

Component Lines of Code

Trusted
Trusted SGX Runtime 975
Trusted Platform Service 1,759
Trusted Cryptographic 1,799
Trusted Key Exchange 47
Trusted Protected File System 226
SGX Port of Rust Standard Library 35,214
Others 2,389

Untrusted
Untrusted SGX Runtime 1,198
Untrusted SGX Cryptographic 1,889

Total 45,496

6 IMPLEMENTATION

As mentioned in §2.1, an SGX program typically has two compo-
nents: trusted component running inside of the SGX enclave and the
untrusted component that interacts with the enclaves. Accordingly,
the implementation of Rust-SGX SDK also has two parts: a trusted
part and an untrusted part. Most of the design challenges are related
to the trusted part. From an engineering perspective, however, the
untrusted part is also necessary to allow enclave developers to
develop a complete SGX program in Rust.

The trusted part can be further broken down into two major
components in Rust-SGX SDK. The first component is the Rust
standard library ported into the SGX execution environment. The
second component, which depends on the Rust standard library,
is the Rust wrappers for Intel SGX SDK APIs. They can be further
broken down into several smaller components, including the SGX
runtime and platform service, in-SGX cryptography, trusted key
exchange, and protected file system, etc.

Table 2 shows the amount of code for each component of Rust-
SGX as the time of this writing3. In the rest of this section, we share
the implementation details of interest for these components.

6.1 Porting Rust Standard Library to SGX

For every language, the standard library is crucial for its program-
ming experience. The porting of a language to a new platform is
incomplete if the standard library is excluded. Making the original
Rust standard library compatible with SGX is non-trivial. There
are some components of Rust std that must be refactored before
they can be used inside SGX. These components are mostly related
to threading, synchronization, and exception handling. Figure 8
illustrates the parts of the Rust std that require the refactoring.
Rust-SGX only maintains these refactored parts. For the compatible
components, we simply reuse the code from the upstream Rust so
that we can always keep these components updated.

6.1.1 Threading. Like most modern programming languages
that support concurrency, Rust often needs to initialize some data
3The source code of Rust-SGX has been released on GitHub at https://github.com/
baidu/rust-sgx-sdk.

in the thread local storage before launching a thread. As mentioned
in §3.2, SGX does not provide a systematic mechanism that allows
developers to customize the construction of data in the thread
local storage (TLS), so we have to implement such mechanisms by
ourselves in Rust-SGX.

What makes the engineering more complicated is that SGX
supports a so-called “unbound” threading policy, which allows
an untrusted thread to enter the enclave using any existing thread
control structure (TCS) allocated inside SGX. This can cause an
untrusted thread to corrupt Rust TLS by preempting another
untrusted thread when blocked by an OCALL operation. However,
we are not aware of any secure mechanism to get the identity of
the untrusted thread entering the enclave. Therefore, current Rust-
SGX does not allow the use of thread local storage when the enclave
is configured with the unbound TCS policy.

6.1.2 Mutex. The Rust implementation of mutex is based on an
internal interface called sys::Mutex. This interface decouples the
mutex abstraction visible to programmers from the actual mutex
implementation which is system and hardware dependent. By
studying the code of sys::Mutex, we confirmed that the primitives
it provides can be re-implemented using the mutex of Intel SGX
SDK. We therefore implemented a wrapper layer to convert the raw
mutex of Intel SGX SDK to Rust sys::Mutex, enabling the use of
Rust standard mutex in SGX.

6.1.3 Exception Handling. To support Rust-style exception han-
dling, we redefined the Rust panic mechanism to support cus-
tomized panic handlers. We also implemented the whole Rust un-
windmechanism, whose standard implementation is not compatible
with SGX. In the programming model of Rust-SGX, developers
need to first set up their own exception handlers and use our SGX-
specific unwind mechanisms to handle the exceptions.

6.2 Static Data Initialization

On most Unix-like platforms, static data in a dynamic library is
initialized when the library is loaded by dlopen. For SGX, this
procedure is different. Static data in an enclave is initialized when
the first ECALL happens. The trusted runtime service of SGX has
implemented a mechanism to initialize C/C++ static objects defined
in an enclave, which are placed in a special ELF section called
.init_array.

Rust has its own static data initialization process, whose im-
plementation is platform specific. We have to port this process
into SGX, using the low-level static initialization functionalities
provided by the trusted SGX runtime service. In particular, Rust
adopts a lazy initialization scheme, meaning static data will not be
fully initialized until the first time it is accessed. Therefore, each
static variable has to be associated with an initialization state. Since
Rust-SGX supports concurrency, we need to make sure this lazy
initialization is thread safe, using the mutex primitives we ported
into SGX.

6.3 The Secure Binding Between Rust and

C/C++

In section 5, we introduced the formalized type system used
to sanitize the interactions between Rust and unsafe languages,

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2344

https://github.com/baidu/rust-sgx-sdk
https://github.com/baidu/rust-sgx-sdk

panic_abort

libstd

unwind Rust
demangle liballoc libc

glue

libcore

Compiler
builtins

glibc

Rust Standard Library Rust Standard Library in SGX

panic_abort

libstd

SGX
unwind

Rust
demangle liballoc tlibc

glue

libcore

Compiler
builtins

Trusted libc (tlibc)
SGX Runtime Service

SGX
backtrace

SGX
Protected FS

Components
maintained by
Rust-SGX

SGX
liballoc

Figure 8: Rust-SGX std Compared to Rust std.

Table 3: Number of Program Locations Sanitized by Our Secure Rust-C/C++ Binding.

Rust-SGX Component

#Securely

Wrapped APIs

#Safe Memory

Management

#Safe C/C++ Object

Manipulation

#Safe Raw-Byte

Memory Access

Trusted SGX Runtime 5 2 5 0
Trusted Platform Service 29 5 24 6
Trusted Cryptographic 37 24 32 27
Trusted Key Exchange 4 4 4 0
Trusted Protected File System 15 15 13 2

particularly the C/C++ interfaces provided by Intel SGX SDK. Our
implementation of this sanitization scheme purely relies on the
native Rust type system. Table 3 displays the detailed breakdown
of program points protected by this type system.

To improve performance, we carefully optimized out some of
the redundant operational semantics. For example, the operational
semantics of from_bytes statements (see Figure 7 in §5.4) require
a new chunk of memory to be allocated when constructing a
Sanitizable Rust object. In some performance-critical functions,
we optimize this scheme to an in-place construction style. Each
program point optimized by this strategy has been carefully audited
to make sure the modification does not lead to any security
breaches.

7 EVALUATION

In this section, we provide the performance evaluation of Rust-SGX.
We designed two sets of benchmarks to evaluate the performance
overhead for software developed with Rust-SGX. One is the
microbenchmark that characterizes the overhead of the individual
SGX-specific APIs under our Rust bindings compared to Intel SGX
SDK (§7.1). The other is the macrobenchmark that characterizes
the individual Rust programs developed with Rust-SGX (§7.2).

Our experiments were performed on a machine with Intel I9-
9900K CPU, with 64G DDR 3466 RAM and 512G HDD, running
16.04.1-Ubuntu Operating System. As to the CPU microcode level,

the revision is 0xb4 with date 2019-04-01. We measured the total
execution time of each of the benchmark program by utilizing the
operating system clock with the finest granularity of nanoseconds.
We run each benchmark multiple times to get the average. The
source code of all of our benchmarks is released at Github at https:
//github.com/mesalock-linux/rust-sgx-benchmark.

7.1 Microbenchmark Test

Our microbenchmark aims to evaluate the overhead of our Rust-
bindings with respect to the APIs provided by Intel SGX SDK.
Therefore, we used the Intel SGX SDK for the baseline compar-
ison, and installed the latest Intel SGX SDK and corresponding
drivers (version 2.4). The comparison was conducted with software
developed with Intel SGX SDK and our Rust-SGX SDK.

Since there are hundreds of APIs in Intel SGX SDK, we cannot
report the result for all of them. Instead, we only evaluate and
report those APIs with Rust bindings that involve SGX specific
instructions (e.g., EENTER and EEXIT through ECALL and OCALL),
features (e.g., attestation), and services (e.g., sealing, and unsealing).
Meanwhile, these APIs are likely used by the enclave programs
multiple times. That is, we did not measure the overhead for those
APIs with one-time overhead (e.g., enclave creation and destruction).
Therefore, with this criteria, eventually we have 9 microbenchmark
programs, and we run them each one million times to get their
average overhead.

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2345

https://github.com/mesalock-linux/rust-sgx-benchmark
https://github.com/mesalock-linux/rust-sgx-benchmark

no
rm
al-
OC
AL
L

sw
itc
hle
ss-
OC
AL
L

no
rm
al-
EC
AL
L

sw
itc
hle
ss-
EC
AL
L

sgx
_g
et_
key

sgx
_cr
eat
e_r
epo

rt

sgx
_ve

rify
_re
po
rt

98

99

100

101

102

103

104

105

106

107

2.78µs 0.26µs 3.26µs 0.38µs 2.21µs 2.75µs 2.93µs

2.83µs

0.26µs

3.34µs

0.39µs

2.33µs

2.83µs

3.06µs

N
or
m
al
iz
e d

O
ve
rh
ea
d
(%
)

Intel SGX SDK
Rust-SGX SDK

Figure 9: Evaluation Result of Microbenchmark Enclave

Enter/Exit, and Attestation.

1 10 100 1,0
00

10,
000

100
,00
0

90

92

94

96

98

100

102

3.58µs 3.59µs 3.62µs 3.88µs 6.57µs 33.76µs

3.46µs 3.47µs 3.50µs 3.77µs

6.57µs 33.67µs

Size of Sealed Data (B)

N
or
m
al
iz
ed

O
ve
rh
ea
d
(%
)

Intel SGX SDK
Rust-SGX SDK

Figure 10: Evaluation Result of Microbenchmark

sgx_seal_data with Varied Size Input.

• Enclave Enter and Exit. Rust-SGX provides APIs for
enclave developers to enter and exit an enclave. To evaluate
the overhead of this Rust bindings, we have designed
four microbenchmarks: normal ECALL, switchless ECALL,
normal OCALL, and switchless OCALL. Note that Intel provides
a collection of switchless features to eliminate enclave
transitions from SGX applications. Switchless ECALL and
OCALL characterize our Rust impact on this important feature.
The normalized overhead for this experiment is presented
in Figure 9. We can see that only switchless-ECALL has a
slightly 0.01µs difference (an extra maximum 4% overhead),
and the rest are all very small.

• Trusted Services. Intel SGX SDK provides a set of APIs
for trusted services such as attestation, e.g., retrieving
a cryptography key, creating the attestation report, and
verifying it. Rust-SGX has a corresponding binding for

1 10 100 1,0
00

10,
000

100
,00
0

90

92

94

96

98

100

102

2.76µs 2.76µs 2.80µs 3.05µs 5.57µs 30.80µs

2.62µs 2.62µs

2.70µs 2.95µs 5.43µs

30.59µs

Size of Unsealed Data (B)

N
or
m
al
iz
ed

O
ve
rh
ea
d
(%
)

Intel SGX SDK
Rust-SGX SDK

Figure 11: Evaluation Result of Microbenchmark

sgx_unseal_data with Varied Size Input.

them as well. We have thus designed three microbench-
marks to test them: sgx_get_key, sgx_create_report, and
sgx_verify_report. While creating and verifying a report
can take different length of the input, we used an empty one
to maximize the potential overhead of our Rust bindings.
The normalized overhead for these tests is also presented
in Figure 9, and the overhead is ranged from 3% to 5%.

• SGX Sealing and Unsealing. An enclave program could
seal data in the enclave into disk storage and later un-
seal it (multiple times). We thus have sgx_seal_data and
sgx_unseal_data to characterize this overhead in our test.
Also, for them, we provide different sizes (from 1 byte to 100
kilobytes) of input to evaluate their overhead. From the seal
and unseal, we can also infer the overhead of commonly used
cryptography functions (e.g., Rijndael AES-GCM, HMAC)
since these functions will be involved during sealing and
unsealing. The normalized overhead for this experiment is
presented in Figure 10 and Figure 11.
Interestingly, we can notice that the Rust version of seal-
ing/unsealing APIs actually performed slightly faster than
Intel’s sealing/unsealing for small size input. The reason is
that Rust-SGX has largely rewritten the original sealing and
unsealing APIs with Rust and made them directly invoke
the Intel’s AES-GCM cryptography primitives, because the
original C APIs did not follow the memory safety principles
proposed in this paper and we have to redefine their inter-
faces and make them type-safe. Our re-implementation is
a transparent statement-to-statement C-to-Rust translation
but it results in a safer and well-typed interface, and slightly
better performance (about 3% for small size input, and
no difference for large size input because the processing
time dominates the Rust-bindings for them). The observed
performance gain may result from the Rust compiler for our
particular implementation.

According to the above microbenchmark evaluation, we can see
that there is a very light overhead with a maximum 4% compared
to the baseline Intel SGX SDK. Therefore, Rust-SGX has small

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2346

n-b
od
y

fan
nk
uch

spe
ctr
al

fas
ta

ma
nd
elb
rot

90

100

110

120

130

140

150

160

31.525s 23.566s 25.241s 28.344s 6.309s

33.018s

26.781s

27.832s 31.018s

9.742s

N
or
m
al
iz
e d

O
ve
rh
ea
d
(%
)

Rust-SGX SDK
Fortanix Rust EDP SDK

Figure 12: Evaluation Result of our Macrobenchmark Pro-

grams Developed with Fortanix Rust EDP and Rust-SGX.

performance sacrifice when built atop Intel SGX SDK, at least with
respect to these SGX specific features. We also have to note that
there might be noise in our test due to the tiny differences in
the timing, though we have minimized this by executing these
microbenchmark functions one million times each.

7.2 Macrobenchmark Test

Our macrobenchmark aims to evaluate the end-to-end overhead
of running a Rust program developed by Rust-SGX. We cannot
compare a Rust program with a C/C++ program since that compari-
son is inappropriate, as essentially it is the comparison of language
specific issues such as compiling, linking, and optimization. Instead,
to really quantify the overhead of Rust-SGX, we need to compare
to other Rust SGX SDKs. Fortunately, there was a public release of a
repository called Fortanix Rust EDP [5] on Github recently, which
is also a project to provide a platform for developing Rust programs
in SGX enclave. Therefore, we can compare the Rust programs
developed with Rust-SGX and Fortanix Rust EDP. Then, we have
to look for or develop typical Rust programs. Luckily, we found
there is a programming language benchmarking website [2] that
provides a set of benchmarks to test different languages. There are
10 rust programs in that website, and we successfully ported five of
them and evaluated the overhead with Rust-SGX and Fortanix Rust
EDP. The reasons for why the other five programs cannot be ported
is: four of them depend on Rayon4, which requires multi-threading
for parallelism, and these 4 benchmarks are incompatible with Intel
SGX; the other one depends on libgmp, which is not available in
SGX.

The evaluation result for these benchmarks is presented in Fig-
ure 12. We can see that all five Rust programs running in Fortanix
Rust EDP have the overhead ranging from 8% to 54% greater
than in Rust-SGX. Note that we compared the running time of
these Rust programs directly in Rust-SGX and Fortanix Rust EDP
from an end to end perspective by using the operating system

4Rayon: A data parallelism library for Rusthttps://github.com/rayon-rs/rayon

clock. The reason that Rust-SGX has better performance than
that of Fortanix is due to the design of these two systems. First,
Fortanix Rust EDP SDK depends on Rust’s libstd, which does not
use any optimization features for SGX. Secondly, Fortanix Rust
EDP SDK replaces ECALL/OCALL designed by Intel with a usercall.
This usercall was heavily used by enclave programs so that the
performance is significantly affected. Rust-SGX instead has an SGX
customized Rust standard library which has all SGX optimizations.

8 APPLICATIONS

Rust-SGX is designed as an infrastructure for memory safe SGX
enclave program development. To demonstrate this, we present
three applications: one is developed by us, and the other two
are mostly developed by community contributors. Through the
demonstration of these applications, we show that programming
with Rust-SGX is productive, efficient, and reliable.

8.1 TLS with SGX Remote Attestation

One of the most attractive security features of Intel SGX is that
before sending confidential data, clients can remotely attest an
enclave to assure the execution environment is indeed secure.
Intel SGX SDK provides a reference implementation for such
attestation. Through a modified Sigma protocol [20], the client
and the enclave will be able to share a common secret after
remote attestation succeeds. Rust-SGX has made such development
easy. In this application, we show that Rust-SGX can support
implementing complicated secure communication protocols with
modest engineering effort.

Theoretically, a shared secret enables the establishment of secure
communication channels. However, the functionality of setting up
such communication mechanisms is not part of Intel SGX SDK. An
Intel white paper [19] proposed to integrate SGX remote attestation
into the TLS protocol to provide more friendly interfaces for
developers of SGX enclaves and clients. We therefore implemented
the algorithm described in the white paper in Rust using Rust-
SGX. The in-enclave code consists of only 752 lines of Rust code
(excluding certain third-party library dependencies we ported into
SGX), with which we are able to validate critical x.509 version
3 extensions. Note that it has been known that verifying X.509
certifications is a difficult and error-prone engineering task

. With Rust-SGX, this has been made easier.

8.2 High-Performance Scientific Computation

Rust-SGX is also suitable for processing large-scale scientific data
and meanwhile preserving the confidentiality. In 2017, the IDASH
privacy & security workshop [4] held a genomic data privacy and
security protection competition. One of the problems is to find
the top 10 most significant Single-Nucleotide Polymorphisms in a
database of genome records using chi-square tests. Competitors are
required to process the data inside SGX enclaves to prevent privacy
leakage. The judging criteria of winning is computation time and
correctness.

Several participants of this contest chose to develop their
solutions on top of Rust-SGX. Table 4 shows the performance of the
top teams. Encouragingly, the winning team is the one using Rust-
SGX. It is worth noting that none of the winning team members are

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2347

https://github.com/rayon-rs/rayon

Table 4: The Final Results of 2017 IDASH Secure Genome Analysis Competition.

Team

Pre-processing

time (s)

The input size after

pre-processing (GB)

Computation

time (s)

Correctness

CEA
† 56 6 7 10/10

Indiana Univeristy 251 2.5 50 10/10
Fujitsu 12 4.7-4.8 94 10/10

UT Dallas/Vanderbilt 480 1.7 14 7/10
U. of Manitoba 203 36 640 10/10

†
The winner team CEA used Rust-SGX to build their contestant program, open sourced at https://github.com/CEA-LIST/ sgntx

involved in the development of Rust-SGX. We interpret this as the
evidence of Rust-SGX being user friendly and also performance
efficient.

8.3 Machine Learning

The preservation of user privacy in machine learning tasks has
become a major concern over AI-boosted computations. SGX
provides a reliable platform for secure multi-party computation
such that cloud providers, model providers, and clients are securely
segregated. In this case study, we show that developers can use
Rust-SGX to perform SGX-specific optimization to relax the
constraint of the limited SGX physical memory.

In particular, a group of researchers [22] has built an inference
engine for the gradient boosted decision tree (GBDT) algorithm
using Rust-SGX. By sophisticatedly optimizing the memory access
patterns, the in-SGX implementation is able to fit a large volume of
data inside the 128MB SGX physical memory with only 10% perfor-
mance slowdown [22], compared with the same implementation
running in the untrusted setting of the same hardware.

9 DISCUSSION

Since the first release in 2017, Rust-SGX has been adopted by many
developers in the community to build secure SGX enclaves. The
usability and reliability of Rust-SGX has been fully demonstrated
through real-world software engineering practice. However, we
have to admit that Rust-SGX cannot and intend not to promise
absolute security. There are several weaknesses that our secure
design methodology fails to cover, but we argue that it is necessary
to trade some security for practical engineering benefits. Also,
Rust-SGX is not meant to be a mere research prototype. Instead, it
aims to be an industry-quality infrastructure to support production
software development.

More specifically, one major source of potential insecurity in
Rust-SGX is the C/C++ code it built upon. As previously explained,
Rust-SGX depends on two groups of C/C++ code. One is the SGX
port of the standard C library and the other is the Intel SGX SDK.
The dependency on libc is inherited from the official Rust language
implementation. If we were able to to avoid using libc, we would
have to extensively refactor the official Rust implementation. This
is impractical, since Rust itself is constantly involving at a rapid
pace. Introducing a massive amount of code that is incompatible
with the upstream makes the maintenance of Rust-SGX extremely
difficult.

Similar reasons drove us to build Rust-SGX based on Intel
SGX SDK instead of inventing our own enclave ABI with pure
Rust abstraction layers, like what the Fortanix Rust EDP did.
Intel SGX SDK provides high-quality implementations of various
cryptography algorithms written in C/C++ and assembly. Reimple-
menting them in Rust, if possible at all, can lead to problems like
performance degradation, incompatibility with NIST standards, and
side channels. On the other hand, Intel is the provider of a number
of libraries important to many privacy-preserving applications, e.g.,
the Intel Math Kernel Library. Intel has been working on porting
these libraries into SGX and the ported versions will very likely
depend on Intel SGX SDK.

10 RELATEDWORK

Attacks and Defenses with Enclave Memory Corruption.

Enclave software developed by systems language such as C/C++ can
have memory corruption vulnerabilities, which can be exploited.
Dark-ROP [21] is the first memory corruption attack against SGX.
It exploited a memory corruption vulnerability in SGX enclave
by utilizing return-oriented programming (ROP). ROP attacks
traditionally rely on gadget instructions like return statement where
an attacker can control execution by inserting malicious function
addresses into the stack. However, performing ROP attacks in SGX
is significantly different from traditional ROP attacks since target
code is running under protection of hardware. Enclave code and
data are not accessible from outside of the enclave. Dark-ROP
achieves its attack by exploiting the exception handling mechanism
in SGX, it constructs three oracles which will give a hint for
attackers about internal status of enclave execution so that attackers
could use it to find the useful gadgets for exploits. However Dark-
ROP has strong assumption that the memory layout is constant
and not randomized.

SGX-Shield [28] performs Address Space Layout Randomization
(ASLR) to SGX environment for preventing memory-corruption.
It employs fine-grained randomization along with non-readable
code to render traditional attacks difficult yo perform. However, the
randomization is not fully implemented in SGX. A safe transition
between host code and enclave code in trusted run-time library is
not presented, leaving a window for attacks.

The Guard’s Dilemma work [9] exploited memory corruption
with efficient code-reuse attacks against Intel SGX even with fine-
grained randomization protected by SGX-Shield. Previous attacks
depend on either enclave crashes, kernel privileges, or strong

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2348

https://github.com/CEA-LIST/sgntx

assumption that memory layout is constant and non-randomized.
The Guard’s Dilemma bypasses the enclave crashes and ALSR
provided by SGX-Shield. In particular, since SGX-Shield does
not have trusted run-time randomized, there is an open avenue
for attackers. The Guard’s Dilemma employs this knowledge to
implement run-time attacks and bypass SGX-Shield without kernel
privilege.
System and Language Support for SGX. Various efforts have
been made to ease the development and deployment of SGX
enclave programs. The library-OS line of work, including Haven [8],
SCONE [7], PANOPLY [30], and Graphene-SGX [33], aims to
support legacy programs in SGX without modifications. These
approaches mimic low-level system programming primitives (e.g.,
POSIX system calls and pthread APIs) inside SGX such that pro-
grams are not aware of the hardware environment change. To the
best of our knowledge, all existing Library-OSes are implemented in
unsafe languages and they significantly increase the TCB size (from
20K to millions of lines of code). Moreover, since legacy programs
are not designed to align with the SGX threat model, some of them
can be vulnerable to the infamous Iago attack [12] even if they can
run as secure enclaves.

Memory safe Languages other than Rust have been ported to SGX
to enable secure and productive enclave development. MesaPy5
is an open source Python spin-off for SGX. It is based on PyPy
and mostly written in RPython, a typed Python dialect. Part of
its C code is formally verified by commercial abstract interpreters.
GOTEE [14] is a research project porting the Go language runtime
into SGX, allowing programmers to execute a goroutine within an
enclave.
Rust Security and Use in SGX. RustBelt [17] was created to
secure the principles of the Rust Programming Language by formal
verification. As a memory and type safe language, none of Rust’s
safety has been formally proven. Rustbelt is the first formal safety
proof for a subset of Rust, and also includes machine-checked safety
proof. Rustbelt designed a language that formalized the static and
dynamic semantics of features of Rust type system and proved the
fundamental theorem by using the Coq proof assistant. RustBelt
has proven the safety of a few important Rust standard library
members using unsafe code, most of which are related to memory
management and synchronization.

Since the first release of Rust-SGX in 2017, our methodology of
building secure enclaves using memory safe languages has inspired
similar efforts. The most related one is the Fortanix Rust Enclave
Development Platform (Fortanix Rust EDP) [5] released in 2019.
Fortanix EDP invented its own application binary interface with
the SGX hardware. Fortanix Rust EDP has a slightly different
engineering focus compared with Rust-SGX. Specifically, Rust-
SGX focusedmore onmemory safety and compatibility with trusted
execution environment, whereas Fortanix Rust EDP engaged more
in memory safety and compatibility with Rust’s standard library.
Some portions of the Rust’s standard library cannot be securely
implemented in SGX, such as environment variable, timing, and
networking. Rust-SGX chooses not to provide these components.
Users who need these functionalities have to find their own

5https://github.com/mesalock-linux/mesapy

solutions and be responsible for their choices. While Fortanix EDP
tries to be fully compatible with standard Rust. Everything that
cannot be implemented inside SGX is delegated to the untrusted
applications and OS outside of the enclaves.

11 CONCLUSION

We have presented Rust-SGX, an SDK for SGX programmers to
develop memory safe enclave programs. We did not build it from
scratch in Rust, and instead we used a layered approach by building
it atop Intel SGX SDK with a formally proven secure interface
between the Rust and C/C++ world. We have implemented Rust-
SGX and tested with a number of benchmarks. Our evaluation
results show that Rust-SGX SDK impose little extra overhead, at
least for the SGX related services, compared to the software directly
developed with Intel SGX SDK. Overall, while enclave programs
developed with Rust-SGX may not have the same performance as
with Intel SGX SDK, they will have stronger memory safety at the
application layer because of the use of Rust.

ACKNOWLEDGEMENT

Wewould like to thank the anonymous reviewers and our shepherd
Frank Piessens for their very helpful comments. Also, Huibo Wang
and Zhiqiang Lin were partially supported by the NSF grants
1834213 and 1834216, as well as a research gift from Baidu X-Lab.

REFERENCES

[1] 1988. Morris worm. https://en.wikipedia.org/wiki/Morris_worm. (1988).
[2] 2007. The Computer Language Benchmarks Game. https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/. (2007).
[3] 2014. Intel Software Guard Extensions Programming Reference. https://software.

intel.com/sites/default/files/managed/48/88/329298-002.pdf. (Oct. 2014).
[4] 2017. IDASH workshop 2017. http://www.humangenomeprivacy.org/2017/

competition-tasks.html. (2017).
[5] 2019. The Fortanix Rust Enclave Development Platform. https://edp.fortanix.com.

(2019).
[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-

flow Integrity Principles, Implementations, and Applications. ACM Trans. Inf.

Syst. Secur. 13, 1, Article 4 (Nov. 2009), 40 pages. https://doi.org/10.1145/1609956.
1609960

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 689–703.
http://dl.acm.org/citation.cfm?id=3026877.3026930

[8] Andrew Baumann,Marcus Peinado, and GalenHunt. 2015. Shielding Applications
from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3, Article 8
(Aug. 2015), 26 pages. https://doi.org/10.1145/2799647

[9] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-reuse Attacks Against
Intel SGX. In Proceedings of the 27th USENIX Conference on Security Symposium

(SEC’18). USENIX Association, Berkeley, CA, USA, 1213–1227. http://dl.acm.org/
citation.cfm?id=3277203.3277294

[10] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In Proceedings of the 2014 IEEE Symposium on Security

and Privacy (SP ’14). IEEE Computer Society, Washington, DC, USA, 227–242.
https://doi.org/10.1109/SP.2014.22

[11] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented Programming: A New Class of Code-reuse Attack. In Proceedings of the

6th ACM Symposium on Information, Computer and Communications Security

(ASIACCS ’11). ACM, New York, NY, USA, 30–40. https://doi.org/10.1145/1966913.
1966919

[12] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. SIGPLAN Not. 48, 4 (March 2013),
253–264. https://doi.org/10.1145/2499368.2451145

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2349

https://en.wikipedia.org/wiki/Morris_worm
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www.humangenomeprivacy.org/2017/competition-tasks.html
http://www.humangenomeprivacy.org/2017/competition-tasks.html
https://edp.fortanix.com
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
http://dl.acm.org/citation.cfm?id=3026877.3026930
https://doi.org/10.1145/2799647
http://dl.acm.org/citation.cfm?id=3277203.3277294
http://dl.acm.org/citation.cfm?id=3277203.3277294
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/2499368.2451145

[13] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow
Attacks. In Proceedings of the 7th Conference on USENIX Security Symposium -

Volume 7 (SSYM’98). USENIX Association, Berkeley, CA, USA, 5–5. http://dl.acm.
org/citation.cfm?id=1267549.1267554

[14] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured Routines:
Language-based Construction of Trusted Execution Environments. In 2019

USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 571–586. https://www.usenix.org/conference/atc19/presentation/
ghosn

[15] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-resolution Side
Channels for Untrusted Operating Systems. In Proceedings of the 2017 USENIX

Conference on Usenix Annual Technical Conference (USENIX ATC ’17). USENIX
Association, Berkeley, CA, USA, 299–312. http://dl.acm.org/citation.cfm?id=
3154690.3154719

[16] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 969–986.

[17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the Foundations of the Rust Programming Language. Proc.
ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages. https://doi.org/10.
1145/3158154

[18] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In Proceedings of the 22Nd Annual Computer Security

Applications Conference (ACSAC ’06). IEEE Computer Society, Washington, DC,
USA, 339–348. https://doi.org/10.1109/ACSAC.2006.9

[19] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
arXiv preprint arXiv:1801.05863 (2018).

[20] Hugo Krawczyk. 2003. SIGMA: The 'SIGn-and-MAc 'approach to authenticated
Diffie-Hellman and its use in the IKE protocols. InAnnual International Cryptology
Conference. Springer, 400–425.

[21] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent Byunghoon Kang. 2017. Hacking in
Darkness: Return-oriented Programming Against Secure Enclaves. In Proceedings

of the 26th USENIX Conference on Security Symposium (SEC’17). USENIX Associ-
ation, Berkeley, CA, USA, 523–539. http://dl.acm.org/citation.cfm?id=3241189.
3241231

[22] Tianyi Li, Tongxin Li, Yu Ding, Yulong Zhang, Tao Wei, and Xinhui Han. 2019.
Poster: gbdt-rs: Fast and Trustworthy Gradient Boosting Decision Tree. Posters
In 2019 IEEE Symposium on Security and Privacy (SP).

[23] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. Ada Lett.
34, 3 (Oct. 2014), 103–104. https://doi.org/10.1145/2692956.2663188

[24] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2Nd International

Workshop on Hardware and Architectural Support for Security and Privacy (HASP

’13). ACM, New York, NY, USA, Article 10, 1 pages. https://doi.org/10.1145/
2487726.2488368

[25] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans.

Program. Lang. Syst. 27, 3 (May 2005), 477–526. https://doi.org/10.1145/1065887.
1065892

[26] Aleph One. 1996. Smashing the stack for fun and profit. Phrack magazine 7, 49
(1996), 14–16.

[27] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE
Computer Society, Washington, DC, USA, 745–762. https://doi.org/10.1109/SP.
2015.51

[28] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling address space layout
randomization for SGX programs. In Proceedings of the 2017 Annual Network and

Distributed System Security Symposium (NDSS), San Diego, CA.
[29] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM

Conference on Computer and Communications Security (CCS ’07). ACM, New York,
NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

[30] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY:
Low-TCB Linux Applications With SGX Enclaves. In Proceedings of the 2017

Network and Distributed System Security Symposium (NDSS ’17).
[31] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On
the Effectiveness of Fine-Grained Address Space Layout Randomization. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE
Computer Society, Washington, DC, USA, 574–588. https://doi.org/10.1109/SP.
2013.45

[32] Gang Tan, Andrew W Appel, Srimat Chakradhar, Anand Raghunathan, Srivaths
Ravi, and Daniel Wang. 2006. Safe Java native interface. In Proceedings of IEEE

International Symposium on Secure Software Engineering, Vol. 97. Citeseer, 106.
[33] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In Proceedings of the 2017

USENIX Conference on Usenix Annual Technical Conference (USENIX ATC ’17).
USENIX Association, Berkeley, CA, USA, 645–658. http://dl.acm.org/citation.
cfm?id=3154690.3154752

[34] Arjan van de Ven and Ingo Molnar. 2004. Exec shield. http://www.redhat.com/f/
pdf/rhel/WHP0006US_Execshield.pdf. Retrieved March 1 (2004), 2017.

[35] RN Wojtczuk. 2001. The advanced return-into-lib (c) exploits: PaX case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[36] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP ’15). IEEE
Computer Society, Washington, DC, USA, 640–656. https://doi.org/10.1109/SP.
2015.45

Session 10B: TEE II CCS ’19, November 11–15, 2019, London, United Kingdom

2350

http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554
https://www.usenix.org/conference/atc19/presentation/ghosn
https://www.usenix.org/conference/atc19/presentation/ghosn
http://dl.acm.org/citation.cfm?id=3154690.3154719
http://dl.acm.org/citation.cfm?id=3154690.3154719
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1109/ACSAC.2006.9
http://dl.acm.org/citation.cfm?id=3241189.3241231
http://dl.acm.org/citation.cfm?id=3241189.3241231
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1109/SP.2013.45
http://dl.acm.org/citation.cfm?id=3154690.3154752
http://dl.acm.org/citation.cfm?id=3154690.3154752
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 The Rust Programming Language

	3 Overview
	3.1 Objectives, Threat model, and Scope
	3.2 Challenges
	3.3 Architecture

	4 Secure Binding Between Rust and C/C++
	4.1 Safe Memory Management
	4.2 Safe Memory Access of C/C++ Objects
	4.3 Safe Memory Access of Raw-Byte

	5 Formalization and Proof
	5.1 Type System
	5.2 Operational Semantics
	5.3 Type Safety
	5.4 Operational Semantics of LR
	5.5 Soundness Proof Sketch

	6 Implementation
	6.1 Porting Rust Standard Library to SGX
	6.2 Static Data Initialization
	6.3 The Secure Binding Between Rust and C/C++

	7 Evaluation
	7.1 Microbenchmark Test
	7.2 Macrobenchmark Test

	8 Applications
	8.1 TLS with SGX Remote Attestation
	8.2 High-Performance Scientific Computation
	8.3 Machine Learning

	9 Discussion
	10 Related Work
	11 Conclusion
	References

