
Poster: AdHoneyDroid – Capture Malicious Android
Advertisements

Dongqi Wang1, Shuaifu Dai1,2, Yu Ding1, Chen Li1, Xinhui Han1

1Peking University, Beijing, China
2CNCERT, Beijing, China

{imdq, dingyu.icst, icst-lichen, hanxinhui}@pku.edu.cn, daishuaifu@chanct.com

ABSTRACT
In this paper we explore the problem of collecting malicious
smartphone advertisements. Most smartphone app contains
advertisements and also suffers from vulnerable advertise-
ment libraries. Malicious advertisements exploit the ad li-
brary vulnerability and attack victim smartphones. Similar
to the traditional honeypots, we need an effective way to
capture malicious ads. In this paper, we provide our ap-
proach named AdHoneyDroid. We build a crawler to gather
apps on the android marketplaces and manually collect ad
libraries and their vulnerabilities. Then AdHoneyDroid exe-
cutes the apps and detects malicious advertisements. In our
approach, we adopt the idea of API sandbox and TaintDroid
to detect the attack event. We store the malicious advertise-
ments in a database for future analysis. Malicious ads can
help security analysts have a better understanding of current
mobile attacks and also disclose the attack payloads.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

Keywords
Malicious Ads; Android; Attack Detection

1. INTRODUCTION
Most smartphone apps contains advertisements [1]. Mali-

cious advertisements are threatening more and more smart-
phones. Millions of Android devices are suffering from vul-
nerabilities such as the JS-Binding-Over-HTTP Vulnerabil-
ity [2, 3]. To understand such vulnerabilities and attack
events, we need an effective way to detects malicious ad-
vertisement attacks and collect these malicious ads.

Why advertisement library vulnerability has so much im-
pact on mobile security? First, almost each mobile app con-
tains at least one advertisement library and every smart-
phone runs apps from time to time. The vulnerability of
advertisement library can directly put user’s privacy in a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distribut-
ed for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS ’14 November 3 - 7,2014,Arizona,USA
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2662395 .

dangerous place. Second, most advertisement library pro-
vides direct Javascript to JAVA interfaces to the developer.
Thus the vulnerability can be directly used to invoke sensi-
tive system functions and grant attacker a higher privilege
to control the victim smartphone. Third, a large amount
of smartphone users seldom update their devices’ operating
system. Thus the attacker can control the pwned phones for
a long period of time. So the vulnerability of ad library is a
critical threat to the mobile users.

Similar to the traditional honeypots, we need a mobile
honeypot to capture the malicious advertisements. The mo-
bile honeypot should be able to identify and capture ma-
licious advertisements among all incoming advertisements.
To achieve this goal, mobile honeypot needs to detect mali-
cious ads attacks. So the main challenge is: how to detect
the incoming malicious ads attacks.

To achieve these goals, we design and build a prototype
named AdHoneyDroid. AdHoneyDroid detects malicious
ads attacks by using TaintDroid [4] and API sandboxing.
We manually analyze disclosed ads library vulnerabilities
and generate the vulnerability signature on the API func-
tion level. For each app, AdHoneyDroid automatically de-
compile the apk file and generate ADs url whitelist and
function call blacklist. AdHoneyDroid identifies incoming
attacks by using the manually generated known vulnerabil-
ity signature, automatically generated app API blacklists,
and privacy leakage detection by using TaintDroid.

Assumption and Adversary Model.
In this paper we assume that the ad libraries do not con-

tain Javascript codes and all the javascript codes executed
in the ad libraries come from incoming advertisements. The
attacker attacks victim smartphone by injecting malicious
javascripts into the advertisements to trigger the vulnera-
bility of advertisement libraries.

2. SYSTEM DESIGN
AdHoneyDroid collects Android apps from markets and

executes them in a monitored environment and capturing
incoming malicious ads. The workflow of AdHoneyDroid is
shown in figure 1. There are four key steps in the workflow:
crawling, preprocessing, running and logging.

Crawling.
We build a simple crawler to automatically collect an-

droid app apk files from Google Play [5] market. Due to the
complexity of aggregator, we only consider the apps which
only contain one single ad library. So we manually collected



Official 
Android 
Market

Crawling

Preprocessing

Filtering

Apps with Specific Ad Lib

<app, ad lib, version> 

Running
Sensitive API Call

TaintDroid
Privacy Leak (DestURL)

Malicious Ad Content

Black List
<JS, JAVA, SensitiveAPI>

White List
Non-Malicious DestURL

Logging
Malicious Ads

Figure 1: Workflow of AdHoneyDroid

these simple ad libraries. AdHoneyDroid decompresses the
apk file and filters out the apps which contain ad aggregator
or more than one ad libraries. So after the crawling and
filtering step, AdHoneyDroid keeps a set of apps which only
contains one specific ad lib.

Preprocessing.
In the preprocessing step, AdHoneyDroid decompiles the

collected apps and generate a whitelist and a blacklist. The
whitelist contains non-malicious ad URLs and the blacklist
contains potential paths from JS interfaces to sensitive API
functions.

The whitelist is used to decrease the false positive rate,
because every single ad library interacts with certain servers
on library initialization. So the whitelist contains all the
URLs referred during the startup phase.

The blacklist is used to detect abnormal API invoking.
Each entry in the blacklist is a triplet, contains Javascrip-
t interface function name, JAVA interface function name,
and sensitive API description. According to the developer
document [6, 7] , a Javascript to JAVA interface is an one
to one mapping, identified by using @JavascriptInterface.
By decompile the captured apk files, we can collect all the
Javascript interfaces. Then AdHoneyDroid generates the
call graph of the app and analyze if the collected Javascrip-
t interface can invoke sensitive API calls. In this paper,
sensitive API calls contains the APIs which should not be
used in ad libraries such as SmsManager.sendTextMessage

and TelephonyManager.getLine1Number. These functions
relate to users privacy and should not be invoked by any
ad libraries. So the entry triplet <A, B, C> means that
Javascript interface A directly calls JAVA function B, and fi-
nally invokes sensitive API C. AdHoneyDroid generates this
kind of blacklist entries as many as possible.

Running.
In the running step, AdHoneyDroid executes the collected

app in an emulator and monitor all the sensitive API calling.
On each sensitive API calling, AdHoneyDroid check the call
stack and looks for the JAVA interface and Javascript inter-
face in the blacklist. If a sensitive API call has a call stack
which matches a blacklist entry, we believe that an malicious
advertisement successfully triggered an attack and invokes
sensitive API functions. What’s more, AdHoneyDroid use
TaintDroid to monitor privacy leakage attacks. On any sen-

sitive information leakage through sensitive API calling, an
attack is also reported.

Logging.
In the logging step, AdHoneyDroid uses the whitelist first

to eliminate false positives. Then AdHoneyDroid stores the
incoming malicious advertisement URL and content togeth-
er with the triggered blacklist entry into database. This
information is very useful for future analysis.

3. RELATED WORKS
As far as we know, there is no similar approach which

can collect malicious advertisements. Most of similar works
focus on security analysis of advertisement libraries such as
[8–12]. Grace et al [8] reveals potential security threats of
ad libraries by using static analysis. Stevens et al [9] ana-
lyzes the privacy risks in Android ad libraries. AdSplit [10],
AdDroid [11] and SanAdBox [12] provide ad library security
protection techniques. However, these works do not capture
incoming malicious ads.

4. CONCLUSIONS
In this paper we propose the design and implementation of

AdHoneyDroid, a malicious ad capturing honeypot system.
AdHoneyDroid can automatically collect apps from market-
s and monitor their execution. By using static analysis,
AdHoneyDroid generates blacklists for sensitive API calls.
AdHoneyDroid use the blacklist together with Taintdroid to
detect malicious advertisement attacks. AdHoneyDroid also
generate whitelists to reduce false positive rates. We believe
that AdHoneyDroid is a practical system which can be used
in industry.

5. ACKNOWLEDGEMENT
This research is supported by the National Natural Sci-

ence Foundation of China (Grant No. 61402025).

6. REFERENCES
[1] Israel Mojica Ruiz, Meiyappan Nagappan, Bram

Adams, Thorsten Berger, Steffen Dienst, and Ahmed
Hassan. On the relationship between the number of ad
libraries in an android app and its rating. IEEE
Software, 99(PrePrints):1, 2014.



[2] FireEye Inc. Js-binding-over-http vulnerability and
javascript sidedoor: Security risks affecting billions of
android app downloads. http://goo.gl/eAFHEK.

[3] Google Inc. Android platform version distribution.
http://developer.android.com/about/dashboards/

index.html#Platform.

[4] William Enck, Peter Gilbert, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. Taintdroid: An information flow
tracking system for real-time privacy monitoring on
smartphones. Commun. ACM, 57(3):99–106, March
2014.

[5] Google Inc. Google play.
https://play.google.com/store.

[6] Google Inc. @javascriptinterface.
http://developer.android.com/guide/webapps/

webview.html#BindingJavaScript.

[7] Google Inc. addjavascriptinterface.
http://developer.android.com/reference/

android/webkit/WebView.html#

addJavascriptInterface(java.lang.Object,java.

lang.String).

[8] Michael C. Grace, Wu Zhou, Xuxian Jiang, and
Ahmad-Reza Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In Proceedings of the
Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WISEC ’12, pages
101–112, New York, NY, USA, 2012. ACM.

[9] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy
Erickson, and Hao Chen. Investigating user privacy in
android ad libraries. Citeseer.

[10] Shashi Shekhar, Michael Dietz, and Dan S. Wallach.
Adsplit: Separating smartphone advertising from
applications. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages
28–28, Berkeley, CA, USA, 2012. USENIX
Association.

[11] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and
David Wagner. Addroid: Privilege separation for
applications and advertisers in android. In Proceedings
of the 7th ACM Symposium on Information,
Computer and Communications Security, ASIACCS
’12, pages 71–72, New York, NY, USA, 2012. ACM.

[12] H. Kawabata, T. Isohara, K. Takemori, A Kubota,
J. Kani, H. Agematsu, and M. Nishigaki. Sanadbox:
Sandboxing third party advertising libraries in a
mobile application. In Communications (ICC), 2013
IEEE International Conference on, pages 2150–2154,
June 2013.


